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GENERAL INTRODUCTION 

A flexible manufacturing system (FMS) is a production facility consisting of flex­

ible, numerically-controlled machines or work stations, automatic material handling 

systems, and control systems. Such systems offer several benefits compared with con­

ventional manufacturing systems; shorter manufacturing cycle times, better resource 

utilization, decreased work-in process inventory, and flexible manufacturing capabil­

ity. Implementation of FMS, however, creates serious problems for designers and 

engineers who are responsible for the design and operation of these systems. Modern 

FMSs are complex with a high degree of flexibility. They need a flexible operation 

and dynamic control over a turbulent environment. The technique used in FMS is to 

identify work pieces uniquely and to control their movements individually between 

the work stations assigned to perform the operation required. As a result, many 

different types of work pieces are simultaneously in-process, each following its own 

routing through the system. Because of these flexible characteristics, the planning, 

design, and control of FMSs are difficult tasks. 

Discrete-event simulation is a widely used tool to solve these problems. The dy­

namic environment of manufacturing systems can be well analyzed using simulation 

techniques. In simulation, a computer is used to evaluate a model numerically over 

a time period of interest, and data are gathered to estimate the desired true char­
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acteristics of the model. The main reasons for using simulation in FMSs are (1) to 

measure the performance and equipment utilization of the system, (2) to compare the 

performance of alternative designs, (3) to develop operating strategies for the control 

of work flow, and (4) to identify bottlenecks and other weaknesses in the system. 

Even though there are many tools now available for the simulation of manufacturing 

systems, the successful use of simulation is somewhat difficult. Failure is mainly due 

to (1) complexity of the modeling language, (2) differences between the simulation 

modeling concept limited by a simulation language and the system to be modeled, 

(3) difficulty in validation and verification of a model, and (4) no rigorous technique 

for the analysis of simulation output. 

This dissertation is directed to the development of a computer-aided simulation 

tool for the design and analysis of FMSs. A computer-aided simulation tool is one 

which aids all activities of the simulation life cycle; modeling, model validation and 

verification, experiments, output analysis, and results presentation. To provide a 

successful environment for simulation projects, the separate modules of the simulation 

software must be integrated. The integrated software provides automatic-processing 

facilities to aid decision makers. This research is one step in this direction. The main 

objectives of this dissertation are: 

• To develop a subclass of Petri nets suitable for modeling and analyzing FMSs. 

• To propose the modeling methodologies for simulation of FMSs consisting of 

hardware components and control systems. 

• To present a computer-aided simulation tool based on the new subclass of Petri 

nets. 
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In this study, a subclass of Petri nets, Conserved nets, is proposed and imple­

mented in a syntax-oriented graphics tool for the creation of the simulation model of 

hardware components in FMSs. Petri nets have proved to be a powerful tool to model 

systems that exhibits synchronization and cooperation. To exploit Petri nets as a 

successful simulation modeling language, however, several extensions are required. 

Conserved nets are developed by extending ordinary Petri nets in order to be used 

for the modeling, analysis, and simulation of FMSs. 

Petri nets provide a graphical simulation language instead of complex textual 

languages. The simulation model is constructed with primitive Petri net objects 

which are classified to correspond to hardware components of FMSs. Under the 

guidance of the interactive graphics tool, a model is incremented in a top-down 

fashion with the Conserved net modeling logic which guarantees conservativeness 

and liveness of the Petri net model. Model validation is performed by exploiting 

useful properties of Conserved nets and use of a Petri net animation. 

Besides Petri net modeling of hardware components in FMSs, high-level, real­

time control systems in FMSs must be modeled easily and accurately. Because the 

high-level control systems have an abstract and informal nature, the modeling of these 

systems is more difficult compared with modeling of hardware components. Although 

Petri nets are suitable to represent some features of FMSs, such as the distributed 

and concurrent nature of processes or the synchronization and conflicting properties 

among tasks in the use of shared resources, they have drawbacks to model high-

level control systems. Instead of using Petri nets, the high-level control systems are 

modeled separately using a control rule specification language developed to facilitate 

the control rule modeling process. 
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The three subsystems—token player, Petri net model, and high-level control 

systems—interface each other during simulation. The token player executes the move­

ments of tokens in a Petri net model, and interfaces with high-level control systems. 

The high-level control systems analyze the current status of the Petri net model and 

give commands to controllable tokens to resolve conflicts in Petri net execution. 

Explanation of Dissertation Format 

The format of this dissertation follows the alternate format described in the 

Graduate Thesis Manual of Iowa State University. It consists of three parts, each of 

them being an individual paper. 

Part I; was developed under the guidance of Professor Thomas A. Barta. This part 

shows the development of Conserved nets, which are proposed to model, analyze, and 

simulate FMSs. A Conserved net is one in which token flows are conserved without 

any transformation during Petri net execution. The development of Conserved nets 

is mainly due to the fact that Petri net models of FMSs are required to have the 

conservativeness property. The structural properties and liveness conditions of the 

Conserved nets are described. The modeling and analyzing power of the Conserved 

nets is demonstrated with a case study. 

Part II; was also developed under the guidance of Professor Thomas A. Barta. This 

part develops a Petri net-based simulation tool for the design and analysis of FMSs. 

In this tool, Conserved nets are implemented in Petri net objects and modeling logic. 

The modeling methods of several high-level, real-time control systems are included. 

Finally, the facilities of the developed tool are described, and the strength of the tool 

is demonstrated with a case study. 
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Part III: was developed with the help of Dr. Linn who is a professor in the Depart­

ment of Industrial and Manufacturing Systems Engineering, Iowa State University. 

This part is an extensive simulation study using the Petri net-based simulation tool 

described in Part II. The objective of this study is to investigate the effect of push-

and pull-based AGV dispatching rules in FMSs. A number of push- and pull-based 

AGV dispatching rules are proposed and compared via the simulation study. The 

developed simulation model consists of two modules: a Petri net model and AGV 

dispatcher. Experiment conditions and output analysis are included in the simulation 

study. 

Finally, the strengths and weaknesses of the developed tool and future study are 

included in the general summary. The bibliography contains the references for the 

general summary and appendix (token player) and the related literature that are not 

listed in the references of each part. 
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PART I. 

CONSERVED NETS FOR MODELING AND SIMULATION OF FMSS 
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Conserved Nets for Modeling and Simulation of FMSs 

D. S. Yim and T. A. Barta 

Department of Industrial and Manufacturing Systems Engineering 

Iowa State University, Ames, Iowa 50010, USA 

Abstract 

In this paper. Conserved nets which are a subclass of Petri nets is proposed to fa­

cilitate the modeling, analysis, and simulation of FMSs. Conserved nets ensure that a 

Petri net model has the conservativeness property. From the structural characteristics 

of Conserved nets, liveness conditions are easily obtained. While hardware compo­

nents of FMSs are modeled by using Conserved nets, high-level, real-time control 

systems in FMSs are separately modeled using the analysis results of the Conserved 

Petri net model. For the simulation of FMSs, a Petri net model and a high-level 

control system are integrated so that the high-level control system is responsible to 

resolve conflicts in the Petri net model. The modeling and simulation procedure is 

demonstrated with an example machine center. 

Keywords: Petri nets, FMSs, Simulation. 
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Introduction 

Basically, a Petri net is capable of modeling a multi-condition process which has 

concurrency and cooperation. Because of this capability, Petri nets have been widely 

used for the modeling and analysis of communications, operating systems, computer 

software and hardware, and manufacturing systems. In addition, Petri nets have 

been used as a simulation tool for discrete manufacturing systems. 

The modeling and analysis power of Petri nets is well suited for the design of 

flexible manufacturing systems (FMSs) including low level control systems. However, 

ordinary Petri nets have limitations to describe complex systems. To increase the 

modeling power, a number of Petri net families have been proposed. Increasing of 

modeling power also increases the complexity and difficulty in analyzing important 

properties of a Petri net model such as conservativeness, liveness, safeness, and bound-

edness. As the model becomes complex, analysis based on reachability tree, invariant 

analysis, and reduction methods becomes difficult. As a result, two approaches have 

been developed. One approach is using subclasses of Petri nets by imposing some re­

strictions in modeling the systems. State machine [1], Marked Graph [2], Free choice 

Petri net [3], and Essentially Decision Free net [4] are among the subclasses of Petri 

nets. The other approach is modeling a Petri net which has desirable properties a 

priori. The synthesis of each resource activity cycle [5] and top down modeling by 

stepwise addition of arcs [6] are based on such an approach. 

Another problem in the application of Petri nets to FMSs is its limitation to 

represent high level decision support systems. The control systems of FMSs are 

usually constructed and operated with a hierarchical structure. While low level con­

trol systems—machine level control systems—are well represented by Petri nets [7], 
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however, high level control systems that require high level decision capability with 

analysis of global system status and historical data are difficult to be modeled by 

Petri nets. A number of techniques have been proposed to combine the Petri nets 

with other modeling techniques such as SI nets [8], Expert system [9], and meta rules 

[10] in order to model high level control systems. 

There are two objectives in this paper. 

• To propose Conserved nets which are a subclass of Petri nets in order to facili­

tate the modeling, analysis, and simulation of Petri nets for FMSs. 

• To demonstrate the design procedure of a high level decision system which can 

be incorporated into a Petri net model developed in this paper. 

Conserved nets are proposed to model hardware components of FMSs easily and to 

ensure the conservativeness of a Petri net model. From the structural properties of 

Conserved nets, the liveness can be easily checked. The high-level control systems 

which are responsible for resolving conflicts in a Petri net model is constructed from 

the analysis results of the Conserved net model. Through a simulation of a Petri net 

model, useful information such as performance measures of a system, and detailed 

movements of parts is obtained. 

A Petri Net for Modeling and Simulation of FMSs 

A Petri net is defined formally as the tuple W  =  ( P , T ,  A ,  M ) ,  where P  is the 

s e t  o f  p l a c e s  ( P 1 , P 2 ' '  " ^  t h e  s e t  o f  t r a n s i t i o n s  -  •  •  , t m ) ,  a n d  A ,  M  

are functions. M  is marking of P  and the number of tokens in p i  is represented as 

M{pi). The set of iV = P UT is called a node set and an element of E N is called 
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a node. The connection relationship between node nj and node nj is represented 

by A{n^,nj). If a directed arc connects from ni to rij the value of A{ni,nj) is 1. 

Otherwise the value of A{ni,nj) is zero. 

In addition to ordinary Petri nets, a number of Petri net families have been 

proposed to model complex systems by extending Petri nets. We added several 

elements to increase the modeling power of a Petri net, and they can be exploited for 

the simulation of FMSs. 

1. Each place is a capacitated, timed place. 

2. Each token is identified as an individual object, and belongs to a certain type. 

3. Each output arc of a transition has attached to it a set of token types to flow. 

4. Each output arc of a place can have attached to it a predicate for a decision on 

token movement. 

To model a system with this Petri net, four types of specifications are neces­

sary: specification of places, output arcs of places and transitions, and tokens (see 

Figure 1.1). A place represented by a circle has two attributes, time and capacity 

represented as PT(pj) and C{pi) respectively. A place has its own capacity to allow 

maximum number of tokens. When an arrived token in a place needs a time delay, 

the time is imposed on the token immediately. The tokens represented by dots are 

flow objects and resources in FMSs. Each token belongs to a certain class (token 

type) such as part, pallet, machine, AGV. Movement of some types of tokens in a net 

can be controlled by a token control system (high-level control system will be con­

sidered as a token control system). Each token type can assume several attributes. 
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(f %),%)) 

P T ( p i ) :  Processing time of p ^ .  

C(pi) : Capacity ofpj. 

{c} : A set of token types. 

( d )  : Decision specification. 

{/!} : Token attributes. 

Figure 1.1: Specification of Petri nets for modeling and simulation of FMSs 

For example, part tokens need attributes such as routing and processing times. Also, 

resource tokens such as machine, robot, AGV, and man can contain a status at­

tribute. Directed arcs represented by arrowed arcs are classified into output arcs of 

a transition and output arcs of a place. An output arc of a transition is specified to 

allow the flow of specific set of tokens. That is, tokens are combined and divided at 

a transition according to the specification of token flow attached to the output arcs 

of the transition. 

An output arc of a place can be specified to define the decision choices for a 

token movement. In Figure 1.2, if there is a token in place p^, it can move to the 

transition or (g- The predicates (a) and (b) attached to each arc are related to 

decisions of token movement. For example, the state of a machine token can be 

either a success or a failure depending on whether the machine is running or down 

for repair. According to the state of the token, the token movement is determined. 
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Figure 1.2: Specification of decision arcs 

If predicate (a) is "success(pj)" and (b) is "failure(p2^)" respectively, the token with 

success state in pj will move to When a predicate is not specified to the output 

arcs of a place, a token in a place will select one of output arcs randomly (i.e., select 

a transition to fire arbitrary). 

Marking 

A marking, M, is an assignment of tokens to the places of a Petri net. The 

number and position of tokens may change during the execution of a Petri net. Note 

that when two different tokens are combined and marked in a place, the total number 

of tokens in a net decreases by one due to the combination of two tokens. Even if 

the combined token is treated as one token in a net, however, it contains the two 

individual tokens. To identify the marking of individual tokens, Mf^{pj) is defined to 

r e p r e s e n t  t h e  n u m b e r  o f  t o k e n  t y p e  k  i n  a  p l a c e  p j .  

The net marking is restricted by the capacities of places. A marked token is 

classified as a token in processing state or a token in waiting state. When a token is 

assigned to a place which needs time delay, the token becomes the processing state 

instantaneously. After finishing the imposed processing duration, the token is in 

waiting state. Mp{pj) and Mw{pj) are the numbers of marked tokens in processing 
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state and in waiting state at place j respectively. It is obvious that M { p j )  =  M p { p j ) +  

M w ( p j ) -

Enabling 

A transition ^ is enabled when the following conditions meet: 

1. the input places connected by directed arcs have more than one token in waiting 

state, i.e., Mwipj) > A{pj,t^) for all input places pj of ti, and 

2. if fired, the capacity of its output places will not be exceeded, i.e., C(pf^) — 

M(pf^) > A{ti,pf^) for all output places pjr. of f j. 

Transition firing 

The enabled transition can fire instantaneously with the transition firing rules. 

When a transition fires, the following events occur concurrently: 

1. For all input places connected with directed arcs, the involved tokens are re­

moved, and M{pj) = M{pj) — A(pj,ti) for all input places pj of 

2. At the transition, the gathered tokens are combined or divided according to the 

specification of output arcs of the transition. 

3. For all output places connected by directed arcs, the token is added, and 

M{p}^) = M{pf^) + A{tj^,pf^) for all output places of 

Conserved Nets 

Originally, the marking of tokens under transition firing rule is based on the 

deletion and creation of tokens. When a transition fires, tokens in the input places 
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are deleted and new tokens are created in the output places of the transition. In 

modeling an FMS, tokens represent resources or jobs in the system. These tokens are 

flow objects in the system, and must be conserved in a net. Rather than being based 

on the creation and deletion of tokens, the transition firing rule needs to consider the 

token movement such that tokens flow in a net without any transformation. After all, 

a useful Petri net model should have the conservativeness property from the following 

facts as discussed in [11]. 

• The number of resources is constant over time. 

• In a closed queuing system, the number of jobs is constant. 

• In an open queuing system, a job token that enters in the system is conserved 

until it leaves the system. 

Originally, a marked Petri net W  =  { P , T ,  A ,  M )  is said to be strictly conservative 

[12] if 
n  

M{pi) = constant, for any reachable marking M. 
i=l 

Since it is common that, in a Petri net model, several tokens are combined into one 

token, and a combined token is divided into several tokens at a transition, strict 

conservativeness is not desirable. As a result, weighting vectors could be defined 

to allow more broad terms of conservativeness ([12], pp. 82): the marked Petri net 

is said to be conservative if the weighted sum of all reachable markings is constant. 

Alternatively we may use a more appropriate definition of conservativeness which can 

be applicable to Petri nets for the simulation of FMSs. When each original token is 

identified as an individual object, a combined token can also be identified as a token 
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with several original tokens. As defined before, let be the number of token 

type A: in a place pj. Then, we develop a following definition of conservativeness. 

Definition 1.1: A marked Petri net W  =  { P , T ,  A ,  M )  is conservative in terms of 

each token type if 

n 
= constant, for any token type k and any reachable marking M. 

i=l 

This definition says that a marked Petri net is conservative when token flows at every 

node are conserved without any transformation in terms of each token type. 

Our objective is modeling a Petri net which has the conservativeness property. 

This is possible by specifying allowable token flows at every arc between two nodes, 

and by properly assigning initial tokens in a net. Our Petri net allows token flow 

specification at the output arcs of a transition. The specification of token flows 

allows a set of token types through arcs. For example, the specification of token flow, 

{(a,6),c}, allows either a combined token of a and b type or a c type token alone. 

Note that the combined token is represented as a tuple of individual tokens. Let's 

consider several legal and illegal Petri nets in view of conservation of token flows. In 

Figure 1.3-(a), place pi has a token with token type a. By firing ij, the token moves 

to P2> but a new token with token type b is required to be created in order to be 

marked in pg. It prohibits the Petri net from conservativeness. Note that, even if the 

token in pi is a combined token with a and b type, the conservativeness will not be 

satisfied. Likewise an a type token is deleted and a b type token is created by firing 

t2 in Figure 1.3-(b). The Petri net in Figure 1.3-(c) has conservativeness since the 

deletion or creation of tokens is not required by firing any transition. 
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(a) Illegal (b) Illegal 

{(a,b)} 

{(a,b)} 

{(a,b)} 

(c) Legal 

Figure 1.3; Conservativeness of Petri nets 
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To have conservât!veness, a Petri net model must be modeled with certain re­

strictions. These restrictions and requirements for conservativeness will be presented. 

For the prerequisite requirements, consider a Petri net without marking of tokens in 

a net. Thus, in the following, a net with marking and a net without marking will be 

distinguished as defined in [1]. 

Definition 1.2: A Petri net W  =  { P , T ,  A ,  M )  is called a Petri net system, and 

G-' = (P, T ,  A )  i s  c a l l e d  a n  u n d e r l y i n g  n e t  ( s i m p l y  c a l l e d  a  n e t )  o f  a  P e t r i  n e t  s y s t e m  W .  

Before deriving the modeling rule for a net with the specification of conservative 

token flows, we will explain the restrictions on Petri net modeling and determination 

of token flows at each node. We call the nets with specification of conservative token 

flows Conserved nets which are a subclass of Petri nets. For the Conserved nets, two 

basic restrictions were set. 

• Tokens with the same type are not allowed to be combined. 

• Multiple arcs between two nodes are not allowed. 

In a Conserved net, only a disjoint set of token types are combined at a transition. 

Also, there should be at most one arc between any two nodes. These restrictions 

do not decrease the modeling power of a Petri net. If it is necessary to combine 

tokens of the same type (e.g., combination of the same kind of resources to perform 

an operation), the tokens may be further classified into different types. By classifying 

token types in more detail, combinations of tokens of the same type can be avoided. 

By not allowing multiple arcs in a net, there is at most one arc between any two 

nodes. 
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Four kinds of token flows occur in a net. The possible token flows at each node 

are determined by examining the speciflcation of token types attached to the output 

arcs of transitions. Let *-Pnj and be possible input token flow and output token 

flow at a node nj in a net G = (P, T, ̂ 4). 

1. Input token flows at a place. 

The possible input tokens at a place are determined by the union of token sets 

specified at the input arcs of the place. If a place p has n input arcs and the 

set of allowable token flows, a j, is specified at the i th input arc, the possible 

input tokens at p is determined as 

* F p  = 

2. Output token flows at a place. 

When a token (combined or original) resides in a place p, it moves along the 

output arcs of the place without any transformation (note that there is at most 

o n e  a r c  b e t w e e n  a n y  t w o  n o d e s ) ,  i . e . ,  F *  = *  F p  

3. Input token flows at a.transition. 

The possible input tokens at a transition are determined by the product of 

token sets from the output token flows of input places. If a transition t has n 

input arcs (i.e., n input places), and possible output tokens at the i th input 

places is Fp^, then the possible input tokens of t is: 

= Fpi ^ Fp2 X • • • X -̂ pn. 

4. Output token flows at a transition. 

The possible output tokens at a transition are determined by the product of 
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{(a,b),a} 

{c} 

Node Possible input tokens Possible output tokens 

PI {(a,b)} U {a}={(a,b),a} {(a,b),a} 

P2 {c} U {c}={c} {c} 

h {(a,b),a}x{c} = {(a,b),a}x{c}= 

{(a,b,c),(a,c)} {(a,b,c),(a,c)} 

Figure 1.4: Determination of token flows at nodes 

token sets specified at output arcs of that transition. When a transition t has 

n output arcs, and each arc has attached to it a set of token types Oj, then the 

possible output tokens at t is: 

Ft = X «2 ^ ^ • 

From the above results, the possible token movements at each node can be 

determined. An example in Figure 1.4 illustrates the determination of possible token 

flows at nodes. To guarantee conservativeness in a net, the input and output token 

flows at each node should be same. Finally, we develop the following definition of 



www.manaraa.com

20 

Conserved nets. 

Definition 1.3: G  =  { P , T , A )  in which the specification of token flows is attached 

to the output arcs of transitions is called a Conserved net if the following conditions 

hold in the net: 

1. A { n i , n j )  = 1 or 0, for any pair of nodes and n j .  

2. When a transition has more than one input place, 

any element of * F-p^ ^ any element of * Ffj 

where and pj are any pair of input places. 

3. = F*, for any transition t .  

Structural Characteristics of Conserved Nets 

In this section, important characteristics of Conserved nets will be presented. 

Before we come to that, some basic definitions in Graph theory will be adopted. 

Definition 1.4: In a net, a sequence of places and transitions, is 

a directed path from p-^ to pn if transition is both an output transition of place pj 

and an input transition of place Pj+i, for 1 < i < n — 1. 

Definition 1.5: In a net, a directed path from pj to pn is a directed circuit if pj 

equals pn-

Definition 1.6: A subnet G' of G  =  { P , T , A )  is defined as C?' = where 

P' E P,T' ^ T, a' g a. All places in a subnet should be able to mark a particular 

token type. Similarly, a subsystem W' = {P',T',A',M') oi W = {P,T,A,M) is 
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defined by adding marking M' G M  to the underlying subnet G '  =  { P ' ,  A ' ) .  

Definition 1.7; A subnet G' = [P'^A') is a closed subnet if all transitions 

connected with P' in G are T'. 

From the definition of Conserved nets, the following characteristics are obtained. 

Property 1: A Conserved net can be decomposed into subnets for the flow of each 

token type. 

Remark: Initial tokens in a Conserved Petri net system are also decomposed into 

original token types which can be assigned to the corresponding subnets. If de­

composed tokens cannot be assigned to the subnets, the Petri net system is a false 

model. 

Property 2: A decomposed subnet of a token type flow is a strongly connected, 

closed subnet, and consists of several directed circuits. 

Property 3: When two decomposed subnets of different token flows share common 

paths, the paths start and end with transitions. 

Property 4: When two directed circuits in a subnet of a token type flow share 

common paths, the paths start and end with places. 

The conservation of token flows requires the subnet for a token type to form 

circuits. If paths of a token do not form circuits in a net, then conservation will 

not be ensured. Therefore, it is necessary that subnets for every token type flow 

are constructed to form circuits. This requirement is natural logic in the modeling of 
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FMSs consisting of sets of shared resources and jobs (also, it is a basic logic in Activity 

Cycle Diagram [13]). It is not surprising that a number of proposed techniques for 

Petri net modeling of manufacturing systems exploited resource activity cycles [5]. 

When a Conserved net can be decomposed into two subnets for each token flow, 

they are sharing common paths, that is, they share common sequences of transition, 

arc, places. To ensure the conservation property in a net, a common path starts and 

ends with transitions because two different types of token can be combined only at 

a transition and this combined token can be divided into original tokens only at a 

transition. 

In a subnet several directed circuits are combined, sharing common paths with 

each other. When the same token type is not allowed to be combined, there cannot be 

a transition which has more than one input place. That is, each transition in a subnet 

has only one input place and one output place (usually called a state machine). When 

two directed circuits are combined, therefore, the common path starts and ends with 

places. 

Liveness of Conserved Petri Net Systems 

Dead-lock in a Petri net system occurs when there are transitions which can­

not fire. A transition is live if it is not dead-locked. In the analysis for liveness of 

conserved Petri net systems, subnets and subsystems of Conserved nets will be con­

sidered. Hereafter, when we refer to a subnet, it is a closed subnet of a token type 

flow decomposed from a Conserved net. In addition, we assume that combined initial 

tokens can be decomposed into individual token types which can be assigned to the 

corresponding subnets. We will follow the formal definition of liveness referred to in 
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Definition 1.8: A transition ^ of a marked Petri net system W  —  ( P , T , A , M )  is 

said to be live if and only if , for all reachable markings M, there exists a sequence 

of transition firings which results in a marking in which t is enabled. A Petri net 

system is said to be live if all its transitions are live. 

We develop definitions for two types of subnet/subsystems in Conserved Petri net 

systems. 

Definition 1.9: A subnet/subsystem in which output arcs of places have no deci­

sion specification is called r-net/r-system, and a subnet/subsystem in which output 

arcs of places have a decision specification is called d-net/ d-system. 

When a place in a r-system has more than one output arc, the marked token in 

the place will move to any one of the arcs randomly whenever the connected transi­

tion meets enabling conditions. But, in a d-system, a marked token in a place which 

has more than one output arc must move along one of the output arcs according to 

the decision specifications attached to the arcs. At below, we develop three proposi­

tions concerning liveness conditions of Conserved Petri net systems: 

Proposition 1.10: An r-system, W = {P,T,A,M), is live if and only if the num­

ber of tokens in the system, M{pi), is greater than zero and less than 

^ P I E G  w h e r e  G  i s  a  u n d e r l y i n g  n e t  o f  W .  

Proof: It is clear that a r-system (Figure 1.5) is not live if the system does not 

contain a token. When a place in a r-system contains tokens, an output transition of 

the place can be enabled only if M(p^) of an output place, p^, of the transition is less 
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(a) A r-net 

P3. 

(b) Circuits of a r-net (a) 

Figure 1.5: The structure of a r-net 
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^31 ) 

P4 

(a) A d-net 

t 

PI 

(b) Circuits of a d-net (a) 

Figure 1.6: The structure of a d-net 
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than the capacity, C'(pg). Note that every transition in the r-net has only one output 

place and one input place. If every place, p^-, in the r-system W is marked with 

which equals to C'(pj-), there is no transition which can be fired. Otherwise, 

there is more than one transition to be fired. Assume that r-system W is live. Since 

it is live, there is more than one transition which can be fired. From the transition 

enabling conditions, the number of tokens, M(pj), in the output place, p^, of the 

enabling transition is less than the capacity, C'(pj). 

A r-nei is a state machine with finite capacity. Without considering capacity, 

a state machine is live if and only if the net contains at least one token [1]. When 

considering capacities of places, the capacitated state machine can be reduced into 

a macro place with the capacity of y^p.ç.Q C{pi) from the result of Murata and 

Komoda [14]. Therefore, the proposition is a natural consequence of the previous 

work on state machine. 

Proposition 1.11: A d-system, W = (P,T, A, M), is live if the number of tokens in 

the system is greater than zero and less than C'(p^),2 = l,2,...,m}, 

where Gf^ is the k  th directed circuit in G = { P , T , A ) ,  and m  is the number of 

directed circuits in G. 

Proof: It is trivial that the d-system W is not live if the net does not contain tokens. 

In a d-net, several circuits are combined sharing common paths (Property 4). If 

every place, p^, in any circuit of W is marked with M(p^) which equals to C'(p^), 

there is a possibility of a dead-lock. Consider an example d-system in which capacity 

of every place is one as depicted in Figure 1.6. If the tokens in P2 and pg try to 
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fire transitions Ég and respectively, and a token is marked in pj, dead-lock occurs 

because there is no room for the token movement. But, if the token in pg can fire 

the transition (g, dead-lock can be avoided.. In a d-net the output arcs of a place 

are specified with some decision for token movement. Sometimes, a token in a place 

must fire a specific transition according to the decision arc specification. So, as in 

the above example, the tokens in P2 and pg may have missions to fire the transitions 

and respectively. Therefore, there is a possibility of a dead-lock if the number 

of tokens in any circuit in G equals to the sum of capacities of places in that circuit. 

Consequently, W is live if the number of tokens in a net is greater than zero and less 

than the sum of capacities of places in any circuit. 

Proposition 1.12: When two subsystems Wi and W2 which are live are combined 

sharing a common path which starts and ends with transitions, the combined system 

is live if and only if the following conditions are avoided; 

(i) non-sharing places of a subsystem are not marked with tokens, and 

(ii) all non-sharing places in the other subsystem are marked with tokens of the 

same number as the capacity. 

Proof: From the reduction rule of a state machine by Murata and Komoda [14], the 

combined net can be reduced into three macro place and two transition. Consider 

an example net in Figure 1.7. The reduced net consists of two non-sharing places 

(Fl and P3), one sharing place (P2), and two transitions and <2)- The capacity 

of a macro place is represented as the sum of capacities of places included in the 

macro place. As shown in the Figure 1.7-(d), each reduced subsystem forms a simple 

circuit. Since two subsystems are live there is more than one token in each circuit. 
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The following conditions for dead-lock hold from the transition enabling rules of a 

Petri net. 

1. The transition cannot be enabled if and only if 

1.1 M(Pi) = 0 or = 0, or 

1.2 M(f2) = C(f2). 

2. The transition ^2 cannot be enabled if and only if 

2.1 M { P 2 )  =  0  or 

2.2 M ( P i )  = C { P i )  or M { P ^ )  =  C ( P ^ ) .  

To be live, transition or ^2 should be enabled. Iff^ is fired, then M{P2) > 0, 

and M {Pi) and M(P2) are less than C{Pi) and C( fg ) respectively. Therefore, 

transition (2 can be enabled. If ^2 is fired, then M( ̂ 2 ) < d both M(P]^) and 

are greater than zero. Therefore, transition ti can be enabled. Consequently, 

if both ti and (2 cannot be fired at the same time, then dead-lock occurs. Both 

transitions cannot be fired if and only if the combination of the above two conditions 

holds. Only the combination of (1.1) and (2.2) holds under the condition that the 

number of tokens in each cycle is greater than zero and less than total capacity 

of places in each cycle. Therefore, if and only if either (1) M{Pi) = C{Pi) and 

M(Pg) = 0, or (2) M(P^) = C'(Pg) and M{Pi) = 0, dead-lock occurs. 

Remark: A Conserved Petri net system is conservative if it is live. 

It is easy to see that a Conserved Petri net system has conservativeness. 
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(d) Reduction of net (c) 

Figure 1.7: The combination of two subnets 
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(a) 

MCI 

INI OUTl 

INTABLE 

( e )  

^OB^ 
IN2 

iVlC2 iVlC2 

0UT2 

(b) 

OUTTABLE 

(c) 

Figure 1.8: A machine center with a robot 

An Example: A Machine Center with a Robot 

The modeling concept of Conserved nets and high-level control rules will be 

explained with an example machine center referred in the paper of Gentina and 

Corbeel [13]. The machine center is composed of two transfer conveyor benches 

designed for loading and unloading (INTABLE and OUTTABLE), two autonomous 

machines, MCI and MC2, with two transfer benches each (IN and OUT), and a 

robot which distributes parts between the input, output transfer conveyor benches, 

and two machines (Figure 1.8). We assumed that two types of parts are introduced 

alternately into the machine center as in Table 1.1. Each part has its own routing: 

part type 1 is machined MCI first, then MC2, and part type 2 is machined MC2 

first, then MCI. 



www.manaraa.com

31 

Table 1.1: Job routings in a machine center 

Part type Routing Process time (min) Part mix 
1 d,a,b,c 2,10,15,2 1/2 
2 d,b,a,c 2,10,15,2 1/2 

* Robot pickup time: 0.5 min. 
* Robot delivery time: 0.5 min. 

Figure 1.9 shows a Petri net model of the machine center using a Conserved 

nets. To make a Conserved net, we assume that the system forms a closed queuing 

network such that the number of parts is constant in the system. There are five types 

of tokens, i.e., part, robot, MCI, MC2, and LOAD/UNLOAD. In this Conserved net, 

we have five subnets for each token type, and all places have capacity of one. From 

the liveness conditions of Conserved nets, the following results can be obtained. 

• Each subnet of a resource token (i.e., MCI, MC2, or LOAD/UNLOAD), is an r-

net, and includes two places (i.e., the capacity of the subnet is two). Since only 

one token can be assigned in each subnet, the subsystems are live (Proposition 

1.10). 

• The subnet of the robot token is a d-net. The output arcs of places in the 

subnet has decision specifications regarding the robot movement. In the subnet, 

9 circuits containing two places are identified. Since only one robot token is in 

the system, the subnet is live (Proposition 1.11). 

• The subnet of the part token is a d-net. Each output arc of a place has attached 

to it a decision specification according to job routings. In the subnet, three 

circuits exist, and every circuit has capacity of four. If the number of part 

tokens is less than four, therefore, the subsystem is live (Proposition 1.11). 
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RA {Ml} 

OP DB 
{(Ml,J) 

{(M2,J)} {R} 

RA OP 

TA 
OB 

{M2} 
OB 

{M3} {R} 

Token types RA 

R: Robot 

J: Part 

Ml: Machine 1 Place types 
M2: Machine 2 

OP: Machine operation M3: Load/unload 
RA: Machine idle 

IB: Input buffer 

OB: Output buffer 

TA: Robot idle 

MV: Robot moving 

Figure 1.9: A Conserved net model of a machine center 
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• In the combined net from subnets of part tokens and a machine token (MSI, 

MS2 or LOAD/UNLOAD), dead lock occurs (Proposition 1.12) if 

(1) RA place of a machine token has no token, and all places of part tokens 

have tokens, or 

(2) OP place of a machine token has no token, and part tokens are not in the 

system. 

• In the combined net of subnets of part tokens and a robot token, dead lock 

occurs (Proposition 1.12) if 

(1) TA place of a robot token has no token, and all places of part token have 

tokens, or (2) MV place of a robot token has no token, and all places of part 

tokens have not tokens. 

The problem in this system is designing a robot control rule to provide an efficient 

part flow. Sometimes, a dead-lock due to bad part movements occurs. To handle this 

situation, some error recovery routine may be required. The more desirable method 

may be to design a sound control rule to avoid the dead-lock phenomenon. In this 

study, the latter approach will be discussed. From the analysis results, the following 

strategies for control rules are required to prevent dead-locks in the system. 

• The number of part tokens in the system should be more than zero. 

• At most one circuit of part tokens have tokens in OB, IB, and OP places in the 

circuit. 

• When a circuit of part tokens has tokens in OB, IB, and OP places, the MV 

place should not have a part token to be routed to the IB place of that circuit. 
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• When a circuit of part tokens has tokens in OB, IB, and OP places, the token 

in the OB should be moved to the next destination as soon as possible. 

Figure 1.10 shows an extended Petri net model in which robot movement is 

described in detail in order to be used for a detail simulation. In addition, the robot 

control system based on the above results was designed and incorporated with the 

Petri net model for the simulation. By accomplishing a simulation, it is possible to 

estimate performance measures such as output rate, flow time, and queue size in the 

system. In addition, the animation of a Petri net model provides validation of the 

control rule. In modeling the Petri net, the following logic is employed. 

• The Petri net model for robot movements consists of CP, LN, PU, DL, and TA. 

PU and DL represent the pick-up and delivery process of the robot respectively. 

TA represents the idle status of the robot. The time taken to move the robot 

is imposed on the LN place. The output arcs of these places are decision arcs. 

When a token is in these places, the control system will give a command to the 

token to resolve conflicts (i.e., to determine the transition to fire). 

• Each machine consists of an input and an output buffer (IB, OB), operation 

(OP), and machine resource available (RA). The part token in the IB place 

moves to the OP place whenever the machine is available. After finishing pro­

cessing time in the OP place, the part token moves to the OB place, and a 

machine token moves to the RA place. 

• At each node, the specification of token flow meets the conservation rule (i.e., 

=  F * )  except at the JC and JD places. 
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Initial tokens 

RA at machines and tables: Machine token 
TA at INTABLE: Robot token 
JC: Job token 
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'Cj)A OUTTAB LE 

Figure 1.10: A Petri net model for the simulation of a machine center 
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• Job tokens are created at the JC place in the input transfer bench whenever a 

job token leaves the JC place in order to guarantee more than one part token in 

the system. The job token creation rule regarding the next job type is attached 

to the JC place. 

• Job tokens are deleted at the JD place in the output transfer bench. 

• Every place has a capacity of one. 

• Initially, machine tokens are assigned to each RA places, a robot token to TA 

place adjacent to INTABLE, and job token to JC place. 

To avoid the dead-lock phenomenon discussed before, the robot control rule is 

modeled by giving a priority to each movement of the robot token. Note that the 

number in a place name means the each table and machine. The number 1, 2, 3, and 

4 refer to MCI, MC2, INTABLE, and OUTTABLE respectively. For example, OBI 

is a OB place of the MCI. Each rule is listed in a sequence of high priority. 

< Robot control rules > 

1. If M(OBl) = 1 and M(OPl) = 1, then send a part token in the OBI to the 
next destination. 

2. If M(0B2) = 1 and M(0P2) = 1, then send a part token in the 0B2 to the 
next destination. 

3. If M(IBl) = 0 and M(RAl) = 1, then send a part token to IBl. 

4. If M(IB2) = 0 and M(RA2) = 1, then send a part token to IB2. 

5. Send the longest waiting part token in OB's to the next destination. 
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When the MCI is blocked because of a full output buffer of MCI, the part in the 

output buffer has the highest priority. The second rule is applied to MC2. The third 

(fourth) rule says that when MCI (MC2) is experiencing the starving of parts, send 

the part to MCI (MG2) if possible. This rule will provide the high utilizations of 

machines. The final rule select a part with the longest waiting time at output buffers. 

The part movement is possible only when the IB of the next route for a selected part 

is not full with tokens. The detailed description of control rules, and the method of 

assigning a command to a robot token will not be given. 

To evaluate and validate the proposed control rule, experimental simulation was 

accomplished. Figure 1.11 shows the output of the simulation. The developed robot 

control rule is considered to be a desirable rule since the simulation results show that: 

1. during the simulation time (1440 min), dead-lock did not occur, and 

2. the utilization of MCI and MC2 is 100 %. 

In a real system, it will be impossible to achieve 100 % utilization of machines because 

of random effects such as machine break down and fluctuation of processing times. 

In this simulation experimentation, however, those factors were not considered. 

Conclusion and Remarks 

In this paper, a subclass of Petri nets, called Conserved nets, has been proposed 

to be exploited for modeling, analysis, and simulation of FMSs. The desirable proper­

ties of a Petri net model of FMSs can be easily checked by using developed conditions 

for liveness of Conserved nets. While hardware components of FMSs, including the 

low level control system, are modeled by Petri nets, the high level control system of 
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1. Place statistics 
Simulated time; 1443.5 

No Type Machine No. of 
pass 

Util. Ave. 
wait 

Ave. 
queue 

1 CP 243 0.00 0.00 0.00 
2 CP 234 0.00 0.00 0.00 
3 CP 332 0.00 0.00 0.00 
4 CP 194 0.00 0.00 0.00 
5 LN 100 0.04 0.00 0.00 
6 LN 191 0.07 0.00 0.00 
7 LN 187 0.07 0.00 0.00 
8 LN 95 0.03 0.00 0.00 
9 TA IN 98 0.00 8.02 0.55 
10 PU MSI 95 0.03 0.00 0.00 
11 DL MSI 97 0.03 0.00 0.00 
12 PU IN 97 0.03 0.00 0.00 
13 TA OUT 96 0.00 0.02 0.00 
14 DL OUT 93 0.03 0.00 0.00 
15 TA MSI 93 0.00 0.58 0.04 
16 TA MS2 143 0.00 0.20 0.02 
17 DL MS2 97 0.03 0.00 0.00 
18 PU MS2 95 0.03 0.00 0.00 
19 IB MSI 97 0.00 7.14 0.48 
20 OB MSI 95 0.00 1.56 0.10 
21 OP MSI 96 1.00 0.00 0.00 
22 RA MSI 95 0.00 0.04 0.00 
23 IB MS2 97 0.00 11.87 0.80 
24 OB MS2 95 0.00 1.24 0.08 
25 OP MS2 96 1.00 0.00 0.00 
26 RA MS2 95 0.00 0.07 0.01 
27 IB OUT 93 0.00 0.00 0.00 
28 OP OUT 93 0.13 0.00 0.00 
29 RA OUT 93 0.00 13.52 0.87 
30 JD OUT 93 0.00 0.00 0.00 
31 OB IN 98 0.00 14.66 0.10 
32 OP IN 99 0.14 12.58 0.86 
33 RA IN 98 0.00 0.00 0.00 
34 JC IN 100 0.00 14.44 1.00 

Figure 1.11: Simulation output of a machine center 
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1. No. Of job produced 

Total time = 1443.50 
No of jobs produced - Type 1 = 47 
No of jobs produced - Type 2 = 46 
Total no of jobs produced = 93 

2. Robot token statistics 

No. of Moving time Waiting time Moving time Waiting time 
robot with part with part without part without part 

1 477.50 0.00 96.00 870.00 
(33 %) (0 %) (7 %) (60 %) 

Figure 1.11 (Continued) 

FMSs is modeled separately in order to resolve the conflicts in the Petri net model. 

The modeling logic of Conserved nets and a robot control system is demonstrated 

with an example machine center. It shows that (Conserved nets well represent the 

hardware components of FMSs. Also, useful information for the design of control 

systems can be easily obtained from the analysis of a Conserved net model. Finally, 

the simulation of a Petri net model provides a useful tool to validate control systems 

and the configuration of hardware components in an FMS. 

The structure of software for modeling and simulation of Conserved nets was not 

described here. Readers who are interested in it can refer to [15]. 
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Petri Net-Based Simulation Tool for the Design and 

Analysis of FMSs 

D. S. Yim and T. A. Bart a 

Department of Industrial and Manufacturing Systems Engineering 

Iowa State University, Ames, Iowa 50010, USA 

Abstract 

Simulation has been recognized as an invaluable tool in designing and analyz­

ing FMSs. In this paper, a Petri net-based simulation tool is presented to aid the 

simulation projects in the manufacturing area. We developed Petri net modeling 

methodology in order to exploit Petri nets for the simulation of FMSs. While hard­

ware components of FMSs are modeled by hierarchically-classified Petri net objects, 

real-time control rules in high-level control systems are separately modeled and in­

tegrated with a Petri net model so that they resolve conflicts occurring in Petri net 

execution. The facilities of the developed tool are described. Also, the use of the tool 

is illustrated via a case study. 

Keywords; Petri nets, Simulation, FMSs. 
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Petri nets are a formal, graphical modeling tool well suited to the description of 

distributed and concurrent systems which exhibit synchronization and cooperation. 

Because of these capabilities, the Petri nets are a widely used tool for the model­

ing and analysis of communication systems, computer software and hardware, and 

manufacturing systems. In addition, Petri nets have been used for the simulation of 

discrete manufacturing systems. Torn [1] proposed extended Petri nets for the ap­

plication of discrete-event simulation. He introduced the basic requirements of Petri 

nets for the purpose of simulation; inhibitor arcs, timed nets, colored tokens, queues, 

test arcs and interrupt arcs. For an application to the simulation of manufacturing 

systems, Bruno and Morisio [2] proposed extended Petri nets, Prot net. They devel­

oped the simulation tool based on object-oriented programming. Alanche, et al. [3] 

described the structure of a Petri net-based simulator, called PSI. The PSI consists 

of a token player, calendar, and statistical functions. 

Even if several extensions and tools are developed in order for Petri nets to be 

exploited in the simulation of manufacturing systems, there exist limitations in repre­

senting complex FMSs with Petri nets. Petri nets can be useful in the representation 

of some features of FMSs, such as the distributed and concurrent nature of processes 

or the synchronization and conflicting properties among tasks in the use of shared 

resources [4]. However, it is rather difficult to model high-level control systems in 

FMSs (e.g., scheduling rules, vehicle dispatching rules) with Petri nets. To reduce 

this difficulty, several methodologies have been proposed. Martinez, et al. [5] inte­

grated high-level Petri nets with a knowledge-based system; coordinate subsystems 

with the local controllers are modeled using high-level Petri nets, and scheduling 
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rules are represented as a knowledge-based system. Similarly, Camurri and Frixione 

[4] proposed Structured timed colored Petri nets to represent low-level coordinate 

subsystems, and used Sl-nets which are based on the frame-based semantic net for 

the modeling of the high-level scheduling system. 

As briefly discussed, it is necessary to increase the modeling power of Petri nets 

to model and simulate complicated FMSs. Also, the high-level control systems should 

be added to Petri net models. This paper presents an approach to exploit Petri nets 

for successful simulation projects. The main objectives are: 

• To develop Petri net objects and the modeling methodology which is suitable 

for the modeling of hardware components of FMSs, including the low-level 

controller. 

• To develop modeling methodology for high-level control systems in FMSs which 

are easily incorporated into Petri net models. 

• To implement these concepts and methodologies into a computer-aided simu­

lation tool for modeling, animation, and analysis of FMS specifications. 

To facilitate simulation modeling, the place and token objects in Petri nets are 

classified to correspond to hardware components of FMSs. A Petri net model is 

constructed with these Petri net objects in a top-down fashion. To ensure well-

formed Petri nets. Conserved nets [6] in which token flows are specified to guarantee 

a conservativeness property are presented. Liveness conditions of Conserved nets 

can be exploited to aid the modeling of a live Petri net model. In addition to Petri 

net models, high-level control systems are separately modeled, and integrated with 

the Petri net model to resolve conflicts occurring in the simulation. These ideas are 
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Figure 2.1: Elements of Petri nets 

implemented in a computer-aided simulation tool. A simulation procedure with the 

developed tool is demonstrated with an example FMS. 

Petri Nets for Simulation of FMSs 

Specification of Petri nets 

A top-down modeling procedure that ensures desirable properties in a Petri net 

model is proposed. Besides the basic elements of Petri nets (i.e., places, transitions, 

directed arcs, and tokens), inhibitor arcs and abstracted places are included to facili­

tate the modeling of complicated systems (Figure 2.1). The inhibitor arc connecting 

between a place and a transition prevents the transition from firing when the con­

nected place has tokens. The top-down modeling methodology allows abstraction of 

the detailed levels into a concise representation. In this Petri net model, a rectangle 

represents an abstracted place. 

The Petri net used here for the simulation of FMSs allows several attributes in 
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Petri net elements. 

• Each place is a capacitated, timed place. 

• Each token is identified as an individual object, and belongs to a certain class. 

• Each input arc of a place has attached to it a set of token types to flow. 

• Each output arc of a place can have attached to it an expression for the decision 

on token movement. 

To model a system with this Petri net, four types of specifications are necessary; 

specification of places, input arcs and output arcs of places, and tokens. A place 

represented by a circle has two attributes, time and capacity. A place has its own 

capacity to allow the maximum number of tokens. When a token arrives in a place 

that needs a time delay, the token becomes in processing state immediately. After 

the imposed time delay, the state of the token changes to a waiting state. Three 

types of processing times are imposed depending on the situation. A place-attached 

processing time, mean time between failure (MTBF), and a token-attached processing 

time are classified considering the characteristics of F MS simulation. 

The tokens represented by dots are flow objects and resources in an FMS. Each 

token is belong to a certain class (token type) represented by a color such as parts, 

pallets, machines, and AGVs. Some types of tokens are controlled by a high-level 

control system. Each token type can assume several attributes. For example, part 

tokens have attributes, routing and processing times. Also, resource tokens such as 

machines, robots, AGVs contain a status attribute (break-down or not). 

Directed arcs represented by arrowed arcs are classified into input arcs of a place 

and output arcs of a place. An input arc of a place is specified to allow the flow of 
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Figure 2.2: Classification of place objects 

a specific set of tokens. An output arc of a place can be specified to define decision 

choice for a transition firing. If decision specifications are not attached to output arcs 

of a place, a transition is selected randomly among a set of enabled output transitions 

of the place. In addition to directed arcs, inhibited arcs are represented by a small 

circle instead of an arrow. 

Petri net objects for modeling of FMSs 

The places and tokens for the modeling of FMSs were classified and specified 

hierarchically to facilitate the modeling process of hardware components. The classi­

fied places—work station places and transportation places—correspond to hardware 

components of FMSs (see Figure 2.2 and Table 2.1). 

In addition to place objects, token objects are classified into active tokens and 

passive tokens as shown in Figure 2.3. The active tokens such as AGVs, machines, 

personnel resources, and robots can move to the next node autonomously, or are 

controlled by a high-level control system. The passive tokens such as parts, pallets, 
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Table 2.1: Place objects for Petri net modeling of FMSs 

Objects Mnemonic 
name 

Token types^ 
through input arcs 

Attributes^ 

Operation OP (A,J,P) MTBF, Process time 
Decision arc 

Repair RP (A,J,P) Repair time 
Input buffer IB J or (J,P) Capacity 

Token link method 
Output buffer OB J or (J,P) Capacity 

Token link method 
Resource 
available 

RA A 

Job creation JC No token Token creation rule 
Job deletion JD J 
Control point CP C or (C,J,P) Decision arc 
Line LN C or (C,J,P) Process time 
Transporter 
available 

TA C Decision arc 

Pick-up PU (C,J,P) Pick-up time 
Delivery DL (C,J,P) Delivery time 
Storage ST (J,P) Capacity 

Token link method 
Job storage JS J Capacity 

Token link method 
Pallet storage PS P Capacity 
a .  Token types. 

A: Autonomous tokens. 
C: Controlled tokens. 
J: Job tokens. 
P: Passive tokens except job tokens. 

(A combined token is represented as a turple of each token type.) 
b .  The capacity of every place is one except IB, OB, ST, JS and PS. 
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Figure 2.3: Classification of token objects 

and fixtures cannot move to other nodes without the combination with active tokens. 

The classified places shown in Table 2.1 have the following characteristics: 

• All places have a capacity of one to allow the maximum number of tokens except 

IB, OB, ST, JS, and PS places. The capacities of those places can be specified 

by users. 

• OP, RP, LN, PU, and DL places are timed places. The OP place takes three 

types of time values: a place-attached, MTBF, and a token-attached time. RP, 

LN, PU, and DL places takes only a place-attached time value. 

• The token flows at each place are conserved except the JC and JD places. While 

job tokens are created in a JC place, these tokens are deleted in a JD place. 

• Input arcs of a place type have specific token types to flow. 

— JC, JD, IB, ST, OB, JS, and PS, places allow only passive tokens. 

- OP, RP, LD, UD, PU, and DL places allow the combination of passive 

tokens and active tokens. 
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- RA and TA places allow only active tokens. 

- LN and CP places allow either active tokens or the combination of active 

tokens and passive tokens. 

• The output arcs of transportation places, CP, PU, DL, and TA, have attached 

to them a decision specification of token movements. The next place to move 

for a token in the place is specified at output arcs of the place. In OP place, 

there are two types of decision arcs; an arc for a success status and an arc for a 

breakdown status. When the processing time (place-attached or token-attached 

time) of a marked place is less than remaining MTBF of the place, the status 

of the place is success. Otherwise, the status becomes breakdown. 

Some places must be specified with token-related rules. JC places need token 

creation rules. A job arrival pattern at an FMS is usually classified as a static demand 

or a dynamic demand. The static demand is the case where there is a fixed number 

of jobs, all having the same arrival time, in an FMS. Under the dynamic demand 

environment, the jobs are continuously arriving according to some arrival pattern. 

For the static demand, job types and the number of jobs in each job type can be 

specified. Several job token creation rules are provided in this simulation tool. They 

deal with which type of job token is created next; (1) SAME: same type of job token 

which was created previously, (2) LRJT: The largest remaining job type, and (3) 

SPT: Shortest processing time. Also, for the dynamic demand, each job type and 

the corresponding distribution of inter-arrival times of jobs can be specified at a JC 

place. 

IB, OB, JS, and ST places need token-link rules. When a token arrives at these 
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places, the token is linked in a token list of that place according to the specified 

rule. This rule corresponds to a machine-to-part allocation rule in FMSs. In this 

modeling tool, several rules to link a job token into a token list are supplied; (1) 

PRIO: predefined priority, (2) SPT: shortest processing time, (3) MRN: minimum 

remaining number of processes, and (4) FIFO: first-in first-out. 

Well-formed Petri net model 

The token movement in a Petri net system will be well performed without imped­

iments only when the Petri net model is well-formed. In order for a Petri net model 

to be well-formed, it must have several properties: safeness, boundedness, conserva-

tiveness, and liveness. The validation of a Petri net model (i.e., simulation model) 

and the analysis of the modeled system are possible by examining the properties. A 

Petri net model of FMSs is required to have the following important properties as 

discussed in [7]. 

Safeness and boundedness If places of Petri nets have physical meanings 

(e.g., buffer, storage, location of vehicles), safeness and boundedness ensure that 

a modeled system has an absence of overflows. The number of tokens in a place 

should not exceed the specified capacity. Since our Petri net for the modeling and 

simulation of FMSs limits the number of tokens in a place (i.e., capacitated place), 

however, these properties are unnecessary to examine. 

Conservativeness If a marked Petri net model is conservative, then the num­

ber of tokens of each token type is constant in all reachable markings. A token in our 

Petri net modeling methodology represents a resource or a job in a system. Therefore, 
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conservativeness must be met by the following facts. 

1 The number of resources is constant over time. 

2 In a closed queuing system, the number of jobs is constant. 

3 In an open queuing system, a job token which enters the system is conserved 

until it leaves the system. 

In an open queuing system, conservativeness of job tokens is not required. But, 

once the job token is created, it should not be transformed until it is deleted at 

appropriate places. The classified place objects provide token creation and deletion 

places to handle this situation. Therefore, besides the token creation and deletion 

places, the token flows at every node (i.e., a place or a transition) should be conserved. 

Sometimes, in a real system, a part is decomposed into several parts by a certain 

operation (e.g., metal cutting operation). In this case, the original part can be 

considered to consist of several decomposable parts. By letting an initial job token 

be several decomposable token types, the conservativeness of each token type will be 

maintained. 

Liveness Liveness implies the absence of dead-locks in a modeled system. 

Dead-locks can easily occur in operating a real system. For example, in operat­

ing an AGV system, collisions among AGVs and blocking problems are common. 

Therefore, it is necessary to detect dead-lock of a system in the modeling process. 
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Modeling rules for a well-formed Petri net 

After modeling a system with Petri nets, the desirable properties of the system 

can be revealed by analyzing the Petri net model. However, the complexity of the 

model is drastically increased with the number of states and events in a net and the 

introduction of inhibited arcs. The desirable methodology is, therefore, to impose 

restrictions on the Petri net modeling process to ensure the required properties a 

priori. That is the reason that several subclasses of Petri-nets (e.g.. State machine 

[8], Marked graph [9], Free-choice nets [10]) and several modeling methods (e.g., 

resource activity cycle [11], bottom-up modeling by adding arcs step by step [12]) 

have been proposed. Conserved nets [6] were also proposed to model FMSs by the 

authors. Conserved nets are a subclass of Petri nets which provide simple analysis of 

the desired properties. The requirements of modeling a well-formed Petri net model 

using Conserved net are as follows. 

1. At every transition, the token flow should meet the conservation rule (i.e., input 

token flow = output token flow). 

2. Each subnet of active token types and passive token types except job token 

type should meet liveness conditions 1 and 2 in Appendix. 

3. When several subnets are combined sharing common paths, any pair of subnets 

should meet liveness condition 3 in Appendix. 

4. Passive tokens should be combined with active tokens to move to other nodes. 

Therefore, a subnet of passive tokens should be combined with subnets of active 

tokens by sharing common paths. 
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5. A token creation place should have an appropriate token creation function. To 

be live, there should not be a shortage of job tokens. Also, when a token arrives 

at a token deletion place, the token should be deleted immediately to prevent 

overflows of job tokens in a net. 

6. When inhibited arcs are introduced into a net, the analysis of properties be­

comes difficult. These arcs may cause unpredictable dead-locks in the system. 

It is recommended that inhibited arcs not be used if possible. 

Since passive tokens cannot move to the next place without combination with 

active tokens, a direct concern is liveness in subnets of active tokens which are com­

bined with subnets of passive tokens. When subnets of active tokens are live, the 

combined Petri net is live if there will not be a shortage and overflow of passive 

tokens. When passive tokens are resources such as pallets, fixtures, and tools, the 

number of these tokens should be constant in a net. But, when passive tokens are 

job tokens, the subnets of these tokens may not be closed nets in that job tokens are 

created and deleted in the nets. When this open net is combined with subnets of 

active tokens, the combined net is live if the number of job tokens in the net is less 

than the total capacity of places for job tokens, and more than or equal to one at 

any time. 

Control Systems in FMSs 

A simulation model for the design and analysis of FMSs contains features for 

hardware components and control systems. The hardware component model de­

scribes the physical elements of FMSs such as work stations, material handling equip-
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ment s, and storage units. The modeling of these elements is rather easily performed 

because they are decomposed into manageable elements and modeled with a formal 

description. On the other hand, the fact that the control logic has an abstract and 

informal nature makes the modeling of control systems difficult. As the manufac­

turing environment proceeds toward automated manufacturing systems, the control 

systems become more sophisticated, needing high accuracy and reliability. 

The main purpose of the simulation is to analyze and design an FMS by ex­

amining performance measures such as production rate, resource utilization, work in 

process, and flow time. These measures are greatly affected by three-tier decision 

rules classified by Suri and Whitney [13]. The two upper decision systems are off-line 

decision rules in that they do not directly control the FMS hardware components. For 

a simulation model, sets of alternatives regarding the off-line decisions are provided 

with input data such as part-mix, system configuration, batch size, and balancing. 

The third level decision systems are real-time control rules; they analyze the real-time 

data and directly control the hardware components. Under the third level decision 

systems, we should decide 

• Real-time scheduling of jobs 

• Job routing and control of material handling systems. 

Our modeling methodology provides a Petri net for the modeling of hardware 

components. In a Petri net model, several types of conflicts can occur so that a 

decision about transition firing is required. Usually, two types of conflicts exist in a 

Petri net model [5]: color conflict and path conflict. The color conflict occurs when 

there are several tokens in an input place of a transition as shown in Figure 2.4. 
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Figure 2.4: Conflicts in Petri nets 

By firing the transition, a token to be involved in the token movement must be 

selected among the set of tokens in the place. The path conflict occurs when there 

are several output transitions of a place. When a place has a token, a transition to 

fire should be selected among a set of output transitions. To resolve these confiicts, 

some decision is required, and this decision is related to real-time control rules. At 

below, the modeling methodology of two real-time control rules—job release rule and 

AGV dispatching rule—is described. 

Job release rule 

When it is necessary to resolve a color conflict, and a dynamic token selection 

rule based on the current status of a system is required, the rule will be attached to 

the corresponding transition. Job release rules are considered to be included in the 

token selection rule to resolve a color conflict. 

Job release rules control the introducing of parts into a system. They determine 

the timing and sequence of releasing each part into the system. In an FMS, the job 

release rule is closely related to the available pallets at the load area. Usually, a 

pallet is restricted to serve certain types of jobs. Therefore, a job cannot be released 
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when there is no available pallet with a like type. This relationship between pallets 

and jobs necessitates the classification of job release rules into job selection rules and 

pallet selection rules. The following rules were included in the simulation tool. 

1. Job selection rules 

• SPJL: Load the part which has the smallest proportion of jobs launched. 

• SPT: Load the part which has the shortest total processing time. 

• FIFO: Load the part with first-come first-serve basis. 

• NEP: As each pallet is unloaded, reload it with a like job type if possible. 

2. Pallet selection rules 

• LUP: Select the least utilized pallet. 

• LWP: Select the pallet which has the longest waiting time. 

In operating a real system, a job release rule may combine the above two selection 

rules. In this case, the rule of higher priority should be specified. For example, under 

the job oriented rule, a job is selected first, then a pallet which can serve the selected 

job is selected. Under the pallet oriented rule, a pallet is selected first followed by 

the selection of a job which can be loaded with the selected pallet. 

Control of material handling systems 

When material handling equipments are represented as tokens in a Petri net, 

these tokens are controllable tokens, and must be given the complete paths to move 

in the net. To accomplish the movement of controllable tokens, a high-level control 
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system should have the capability to analyze the current status of the Petri net and 

historical data, and to assign a path to the controllable token. The path for the 

token is given so that the path conflict is resolved. At below, we will concentrate on 

the control of Automated Guided Vehicle (AGV) systems since this system is widely 

used recently. 

In operating an AGV system, three types of selections are required: an idle 

vehicle, a part to move, and the next process of the selected part. Egbelu and 

Tanchoco [14] classified the AGV dispatching rules into work center initiated rule 

and vehicle initiated rule. In the work center initiated rule, a work center which has 

a part to move to the next operation selects a vehicle among a set of idle vehicles. 

In the vehicle initiated rule, an idle vehicle selects a work station to serve among the 

work stations which have parts waiting at output buffers for the next operation. 

In the FMS environment, the vehicle initiated rule involves the selection of the 

part to move and the next process for the selected part among the set of parts and 

processes simultaneously requesting the service of any vehicle. Under the push rule, 

an idle vehicle first selects the part among the set of parts waiting for an AGV in 

output buffers of work stations. Then, it selects the next process for the selected 

part among the set of alternative processes. But, under the pull rule, the selection 

sequence is reversed. An idle vehicle first selects a process which is highly demanding 

a replenishment of parts. Then it selects the part which can move to the selected 

process among the set of available parts in output buffers. 

The following rules were included in the developed AGV dispatching system. 

Some of these rules were adopted from the literature [14,15,16]. 

1. Vehicle selection rule 
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• LIV: Select a vehicle with the longest idle time. 

• NV: Select the nearest vehicle. 

2. Part selection rule 

• LWT: Select a part with the longest waiting time. 

• MQS: Select a part in output buffer which has the maximum queue size. 

3. Process selection rule 

• LIT: Select a work station which is experiencing the longest inter-arrival 

time of parts. 

• MRIQ: Select a work station whose input buffer has the maximum remain­

ing queue space. 

• MWQ: Select a work station whose input buffer has the minimum queue 

size in terms of processing time. 

Facilities of Petri Net-Based Simulation Tool 

The developed simulation tool consists of several subsystems including modeling, 

executive, and output analysis (Figure 2.5). Figure 2.6 depicts modeling procedure 

emphasized on user interface. A Petri net graphics editor provides a graphic language 

for the modeling and simulation instead of a complicated textual programming lan­

guage. Once the Petri net model is completed, the system automatically transforms 

the model to the internal representation. The high-level, real-time control rules are 

modeled, and transformed to a C program by control rule transformer which is based 
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Figure 2.5: The structure of Petri net-based simulation tool 

on automatic code generation in order to be compiled and linked with the token 

player and the animation system. 

In addition to the modeling processes, this tool automatically performs output 

analysis according to user requirements. 

Petri net graphics editor 

The graphics editor is used to create and modify the Petri net model. Modelers 

can draw and edit a model by selecting elements of Petri nets and placing them in 

the desired location. Six elements are provided; abstracted places, places, transitions, 

directed arcs, inhibited arcs, and tokens. The abstracted place represents an abstrac-
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tion of a Petri net model. The abstracted place will be further completed when going 

down levels, thus, a top-down modeling approach is accomplished. As a result, a 

Petri net model consists of several submodels which are hierarchically constructed. 

Under the Petri net graphics editor, places, token flows, and initial tokens will be 

specified. In creating.a place, place attributes such as place type, capacity, and token 

link rule can be specified. Also, in creating an arc, the possible token types through 

the arc are specified. 

After creating a Petri net model, the Petri net transformer automatically trans­

forms the model into the internal representation that will be fetched by a token player 

during simulation execution. 

Control rule modeling 

To model the high-level control system, a token control language was developed. 

It consists of predicates, functions, and control statements (Table 2.2). Originally, 

the language was devised to model AGV dispatching rules. Besides, it is possible 

to model the control rules for other controllable tokens such as robots. The control 

rule is modeled in order to give a command to controlled tokens. After the control 

rule is modeled, the control rule transformer generates a C program to be compiled 

and linked with the token player and Petri net animation system. In addition, the 

transition-attached rules such as job release rules can be specified under Petri net 

graphics editor. 
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Elements 

Table 2.2: Elements of token control language 

Usage 
Predicate FULL(P): If M { P )  =  C { P ) ,  then true. 

EMPTY(P): If M { P )  =  0, then true. 
PROCESS(P): If Mp{P) > 0, then true. 
WAIT(P): If Mw{P) > 0, then true. 

where P :  place number 
M { P ) :  no. of tokens in P  
C ( P ) :  capacity of P  
M p ( P ) :  no. of processing tokens in P  
M w ( P ) '  no. of waiting tokens in P  

Function PUSH((Pii,PI2'" • • '-Pln)'^'l'(^21'-f'21' 
PULL((Pi 1, Pi2, • • •, i'ln )' ̂ '2 ' ( ^21 ' •f'22 ' ' 
SELECT-TK( (ifci ,(&2, -, t^m), tg ) 

where P^~: place number 

•'^2m)'^"2) 
' ̂ 2m)' ) 

t j -
t k j :  the j  th token name 

ki'. part selection rule {LWT,MROQ} 
A:2: process selection rule {LIT,WIQ,MRIQ} 
k^: token selection rule {LIV, NV} 

Conditional IF (predicate 1 )  0 P i  (predicate 2 )  O P 2  
statement THEN function 1 

ELSE function 2 

where O P j :  logical operator {AND, OR} 



www.manaraa.com

65 

Token player and animation 

A token player executes a Petri net model and interfaces with a high-level control 

system. During the simulation, the token player executes the movement of tokens in 

a model, and calls the control system in case control of token movement is needed. 

Simulation execution can be viewed by an interactive animation system. The interac­

tive animation system interfaces with the token player to display the animated Petri 

net model. 

Model validation can be performed by two procedures: a syntax-oriented Petri 

net graphics editor and an interactive animation of the Petri net. The Petri net 

graphics editor interactively checks the failure of token flows, conflict by inhibited 

arcs, and dead-locks in a circuit during the Petri net model creation. As another 

way of model validation, the user can execute a Petri net model and can see the 

flow of tokens from an animated Petri net. During the simulation, users can select a 

transition to fire among the several alternative transitions. It helps to detect wrong 

models easily. 

Output analysis and results presentation 

From the output of a simulation execution, the output analyzer estimates the 

performance measures according to the characteristic of simulation-finite horizon or 

steady state. Several forms of simulation results are presented. The user can select the 

desired forms (e.g., table or graphic form) and performance measures to be displayed. 

With gathered place and token statistics, useful measures such as throughput rate, 

flow time, work in process, and make span can be obtained. 
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An Example 

In this section, a simulation of an FMS using the Petri net-based simulation tool 

will be demonstrated. An example FMS used for the demonstration was adopted from 

the literature [17]. In this FMS, two types of jobs are produced, and the quantities 

of each job type are similar. As shown in Figure 2.7, there is a machine cell and a 

broaching machine for each job type. Gauge and wash stations are shared by both 

types of jobs. Raw material is manually loaded into trays at load/unload stations, 

each for one type of jobs. The tray is moved between work stations by a vehicle 

moving along a linear track. The sequence of process for each job type is included in 

Figure 2.7. There are buffer positions at each machine, from which the material is 

lifted out of the tray and placed into the machine's fixture by a robot. This system is 

run for three shifts each day to meet demand. There are two men in the load/unload 

area during the first shift, one man during the second shift, and no men during the 

third shift. To run the system during the third shift, the raw material should be 

stored in the storage, and at the same time, the finished part should be fetched from 

the storage to unload during the first and second shift. 

The Petri net model was developed under the Petri net graphics editor (Fig­

ure 2.8, 9, and 10). In Figure 2.8, transportation including movement of a vehicle is 

the focus while work stations are abstracted for further modeling. Figures 2.9 and 

2.10 show Petri net models of a machine, and load/unload stations. The load/unload 

station contains JC place with a job creation rule, SAME, to create jobs of the same 

type. Note that a Petri net model for load/unload stations includes the timed places, 

SHI, SH2, and SH3, representing each shift. They were modeled so that the person­

nel resource is changed according to the shift. In addition, a job release rule, FIFO 
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Figure 2.7: An example FMS 
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Figure 2.8: A Petri net model of an FMS at transportation level 
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i: Work cell number 

(3 - 8 in Figure 7) 

Figure 2.9: Petri net model of a machine center 

(as the part selection rule) and LWP (as the pallet selection rule), is attached to the 

output transition of JC and PS. In addition, the initial tokens in the Petri net model 

were described in Table 2.3. 

The vehicle dispatching rule is modeled using a control rule specification lan­

guage. Two different rules are modeled to be applied at each shift. During shift 3, 

the finished part should not be moved to the load/unload area because there are no 

men in the area. Instead, the finished parts are moved to storage. During shift 1 and 

2, the finished parts in storage are moved to the load/unload area, and raw material 

is stored in storage to be processed in shift 3. The following control rule was modeled 

to handle these considerations. 

1. IF (FULL(SHl) OR FULL(SH2)) THEN 

(a) PUSH((OBl,OB2,OB3,OB4,OB5,OB6,OB7,OB8),LWT,(IBl,IB2, 
IB3,IB4,IB5,IB6,IB7,IB8),LIT) 

(b) PUSH((0B1,0B2), LWT, (ST)) 

(c) PUSH((ST), LWT, (IB1,IB2), LIT) 
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Figure 2.10: A Petri net model of load/unload stations 
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Table 2.3: Initial tokens 

Type Name Places Remark 

Controllable AGV TA at WASH 
Autonomous MCI RA3 

MC2 RA4 
BRI RA5 
BR2 RA6 
GAUGE RA7 
WASH RA8 
MANl RAl 
MAN2 RA2 
MAN3 RAO 
SHIFT SHI Shift token 

Passive JOB JCl Type 1 
JC2 Type 2 

(JOB,PALLET)" IB1,0B1,IB3, Job 
OB3,OP3,IB5, type 1 
0P5,0B5,IB7, 

OB7,OB8,ST(4)^ 4 tokens in ST 
IB2,OB2,IB4, Job 
OP4,OB4,IB6, type 2 
0P6,0B6,0P7, 

IB8,OP8,ST(4)^ 4 tokens in ST 
a: Combined token of JOB and PALLET. 
b: ST place contains 8 tokens. 
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2. IF FULL(SH3) THEN 

(a) PUSH((ST),LWT,(IB3,IB4),LIT) 

(b) PUSH((OB3,OB4,OB5,OB6,OB7,OB8),LWT,(IB3,IB4,IB5, 
IB6,IB7,IB8,ST),LIT) 

The control rule model was translated to a C program to be compiled and linked 

with the token player and animation system. 

Figure 2.11 shows the simulation output regarding place and token statistics. 

Discussion and Future Study 

In this paper, the Petri net-based simulation tool was presented. It was pro­

grammed with the C language under MS-DOS with a micro computer and EGA 

graphic facility. 

The developed simulation software has some weaknesses which need further 

study. Especially, in modeling FMSs, the following aspects are required to be ex­

tended. 

• Extended place objects. 

• Models of high-level, real-time control systems 

To give extensive modeling power to the tool, diverse place objects are required. 

We are considering a tool to make new place objects. According to the application, 

a modeler may define the required place objects under the place object definition 

system. Then, users could make a model using the predefined place objects. 

The proposed token control language has limitations to represent more complex 

rules. By allowing the users to make a program for control rules with the C language. 
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1. Controlled Token Statistics 

Token Token Moving Waiting Moving Waiting 
type Name with part with part empty empty 

AGV AGVl 335.0 0.0 420.0 445.0 
(28%) (0%) (35%) (37%) 

2. Job Token Statistics 

TOTAL TIME = 1200.0 
NO OF JOBS COMPLETED - TYPE 1 = 11 
NO OF JOBS COMPLETED - TYPE 2 = 10 

3. Place Statistics 

Place Place Cell No. Of Process Wait Queue Capacity 
No Type No. Pass Time Time Size 

1 OP 7 21 315.0 41.4 0.7 1 
2 RA 7 21 0.0 0.0 0.0 1 
3 IB 7 22 0.0 60.5 1.1 2 
4 OB 7 21 0.0 51.6 0.9 1 
5 OP 5 11 660.0 43.6 0.4 1 
6 RA 5 11 0.0 0.0 0.0 1 
7 IB 5 11 0.0 97.3 0.9 1 
8 OB 5 11 0.0 98.5 0.9 1 
9 OP 3 11 1100.0 0.0 0.0 1 
10 RA 3 11 0.0 0.0 0.0 1 
11 IB 3 10 0.0 101.0 0.8 1 
12 OB 3 11 0.0 30.5 0.3 1 
13 OP 6 11 660.0 43.6 0.4 1 
14 RA 6 11 0.0 0.0 0.0 1 
15 IB 6 10 . 0.0 50.6 0.4 1 
16 OB 6 11 0.0 105.4 0.9 1 

Figure 2.11: Simulation output for place and token statistics 
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or by providing interfaces with other systems (e.g., expert systems), the complex 

control rules may be modeled. In this case, there is a difficulty that users must know 

in detail about the mechanism of the token player. 
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Appendix: Conserved Nets 

A Petri net is defined formally as the tuple W = {P,T,A,M),  where P is the 

set  of  places  {PI ,P2^" '  ̂ Pn) ,  T is  the  set  of  t ransi t ions (g ,  '  "  ,  and A, M 

are functions. M is marking of P and the number of tokens in p^ is represented as 

M[pi). The set of AT = P U T is called a node set and an element of Wj 6 iV is called 

a node. The connection relationship between node nj and node rtj is represented 

by A{ni,nj). If a directed arc connects from n^- to nj the value of A{ni,nj) is 1. 

Otherwise the value of A{ni^nj) is zero. 

In addition, the following attributes are attached to Petri net elements to increase 

the modeling power of a Petri net, and they can be exploited for the simulation of 

FMSs. 

1. Each place has a capacity, and a processing time PT{p^).  

2. Each token is identified as an individual object, and belongs to a certain type. 

3. Each output arc of a transition has attached to it a set of token types to flow. 

4. Each output arc of a place can have attached to it a predicate for a decision on 

token movement. 

Originally, the marking of tokens under transition firing rule is based on the 

deletion and creation of tokens. When a transition fires, tokens in the input places 

are deleted and new tokens are created in the output places of the transition. In 

modeling an FMS, tokens represent resources or jobs in the system. These tokens are 

flow objects in the system, and must be conserved in a net. Rather than being based 

on the creation and deletion of tokens, the transition firing rule needs to consider 
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the token movement such that tokens flow in a net without any transformation. 

Four kinds of token flows occur in a net. The possible token flows at each node are 

determined by examining the specification of token types attached to the output arcs 

of transitions. Let and be possible input token flow and output token flow 

a t  a  n o d e  n i  i n  a  n e t  G  =  { P , T , A ) .  

1. Input token flows at a place. 

The possible input tokens at a place are determined by the union of token sets 

specified at the input arcs of the place. If a place p has n input arcs and the 

set of allowable token flows, a^, is specified at the i th input arc, the possible 

input tokens at p is determined as 

2. Output token flows at a place. 

When a token (combined or original) resides in a place p, it moves along the 

output arcs of the place without any transformation (note that there is at most 

one arc between any two nodes), i.e., Fp =* Fp 

3. Input token flows at a transition. 

The possible input tokens at a transition are determined by the product of 

token sets from the output token flows of input places. If a transition t has n 

input arcs (i.e., n input places), and possible output tokens at the i th input 

places is F*., then the possible input tokens of t is: 

= Fp  ̂ X X • • • X Fp  ̂
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4. Output token flows at a transition. 

The possible output tokens at a transition are determined by the product of 

token sets specified at output arcs of that transition. When a transition t has 

n output arcs, and each arc has attached to it a set of token types a,j, then the 

possible output tokens at t is: 

F* = X a2 X • • • X an 

From the above results, the possible token movements at each node can be 

determined. To guarantee conservativeness in a net, the input and output token 

flows at each node should be same. We develop the following definition of Conserved 

nets. 

Definition: G  =  ( P , T , A )  in which the specification of token flows is attached to 

the output arcs of transitions is called Conserved net if the following conditions hold 

in the net: 

1. A { n i ^ , n j )  = 1 or 0, for any pair of nodes and n j .  

2. When a transition has more than one input place, 

any element of * Fp^ ^ any element of *Fpj 

where pj and pj are any pair of input places. 

3. *Fi = F*, for all t .  

From the definition of a conserved net, the following properties are obtained. 

Property 1: A conserved net can be decomposed into subnets for the flow of each 
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token type. 

Property 2; A decomposed subnet of a token type flow is a strongly connected, 

closed subnet, and consists of several directed circuits. 

Property 3: When two decomposed subnets of different token flows share common 

paths, the paths start and end with transitions. 

Property 4: When two directed circuits in a subnet of a token type flow share 

common paths, the paths start and end with places. 

At below, the liveness of Conserved Petri net system are briefly described without 

proof. Before we present liveness conditions, two Petri net systems will be considered. 

When a place in a r-system has more than one output arc, the marked token in 

the place will move to any one of the arcs randomly whenever the connected transition 

meets enabling conditions. But, in a d-system, a marked token in a place which has 

more than one output arc must move along one of the output arcs according to the 

decision specifications attached to the arcs. 

Proposition 1: An r-system, W = {P,T,A,M), is live if and only if the number of 

t o k e n s  i n  t h e  s y s t e m ,  M ( p ^ ) ,  i s  g r e a t e r  t h a n  z e r o  a n d  l e s s  t h a n  C ' { p i ) .  

Proposition 2; A d-system, W = [P,T, A, M), is live if the number of tokens in the 

system is greater than zero and less than = l,2,...,m}, where 

G f j  is the k  th directed circuit in C? = { P , T , A ) ,  and m is the number of directed 
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circuits in G. 

Proposition 3: When two subsystems W-^ and W2 which are live are combined 

sharing a common path which starts and ends with transitions, the combined system 

is live if and only if the following conditions are avoided: 

(i) non-sharing places of a subsystem are not marked with tokens, and 

(ii) all non-sharing places in the other subsystem are marked with tokens of the 

same number as the capacity. 
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PART III. 

PUSH AND PULL RULES FOR DISPATCHING AUTOMATED 

GUIDED VEHICLES IN A FLEXIBLE MANUFACTURING SYSTEM 
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Push and Pull Rules for Dispatching Automated Guided 

Vehicles in a Flexible Manufacturing System 

D. S. Yim and Richard J. Linn 

Department of Industrial and Manufacturing Systems Engineering 

Iowa State University, Ames, Iowa 50010, USA 

Abstract 

Automated Guided Vehicle (AGV) systems are widely used in flexible manufac­

turing systems (FMSs) for material handling purposes. Although the AGV systems 

have provided high flexibility, the design issue on AGV dispatching rules is still to 

be resolved. The AGV dispatching rules in an FMS are generally based on a push 

or a pull concept. A simulation study is accomplished to investigate the effect of 

these dispatching rules on the FMS performance. The developed simulation model 

consists of two modules: a Petri net model and an AGV dispatcher. Two modules are 

integrated so that the AGV dispatcher controls AGV tokens in the Petri net model. 

It was shows that there is no significant difference in output rate between push- and 

pull-based AGV dispatching rules in a busy FMS. 

Keywords: Push and pull rules, AGVs, Petri nets. Simulation 
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Introduction 

During the past several years, Automated Guided Vehicle (AGV) systems have 

received much attention by designers and engineers of automatic manufacturing sys­

tems. The AGV is a battery-powered, wire-guided vehicle, and is controlled by an 

on board or a network control computer. The AGV systems have been widely used 

in Flexible Manufacturing Systems (FMS). Although they provide higher flexibility 

than conventional systems, the design issues of AGV control systems in FMSs are 

still to be resolved. The AGV control system dispatches idle vehicles to move pallets, 

parts, and tools between work centers in an FMS. The complex interaction between 

material flows and processes requires an efficient vehicle dispatching procedure to 

maximize the FMS performance. 

Because of its ability to graphically and hierarchically represent systems with 

both asynchronous and concurrent properties, Petri nets have proved to be an efficient 

tool to model the complex interactions among different processes in an FMS. In this 

study, a Petri net-based simulation model was developed for an AGV operating in an 

FMS. The model was used to analyze the effect of different AGV dispatching rules 

on the FMS system performance. 

AGV Dispatching Rules 

Vehicle dispatching rules involve assigning vehicles to move loads, and concerns 

the relationship between the vehicle resource and the set of parts to be moved. Gener­

ally, AGV dispatching rules are classified into work-center-initiated rules and vehicle-

initiated rules. When a work center has a part to be routed for the next operation. 
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it selects a vehicle among a set of idle vehicles according to the work-center-initiated 

rule. When a vehicle becomes idle, it selects a task (i.e., a part to move) to serve 

under the vehicle-initiated rule. The vehicle initiated rule can be further classified 

into a source-driven rule and a demand-driven rule. The source-driven rule operates 

on a push concept: an idle vehicle selects a part to move from an output queue that 

has the highest priority. The demand-driven rule operates on a pull concept: an 

idle vehicle selects the part that has the highest demand from its succeeding work 

stations. 

The simulation has been recognized as an invaluable tool in evaluating the per­

formance of AGV systems. A number of studies on the AGV dispatching rules were 

based on the simulation technique (Egbelu and Tanchoco, 1984; Egbelu, 1987; Rus-

sel and Tanchoco, 1984; Sabuncouglu and Hommertzheim, 1989; Ulgen and Kedia, 

1990). Egbelu and Tanchoco (1984) compared the performance of several work-

center-initiated rules and vehicle-initiated rules in a batch manufacturing system. 

They showed that in a busy shop the vehicle-initiated rule has a more significant 

effect on system performance than the work-center-initiated rule. Egbelu (1987) fur­

ther compared the performance of a demand-driven rule and several source-driven 

rules in a batch manufacturing system. He concluded that the demand-driven rule is 

competitive to source-driven rules. 

In FMS environment, a vehicle-initiated rule consists of a part selection function 

and process selection function. Very often parts have alternative routings where they 

may be sent to different work centers. An idle vehicle needs to select not only the 

part to move but also its destination (next process). The push and pull concepts 

of vehicle-initiated rules can be implemented on the basis of the execution order of 
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part selection and process selection functions. In the push rule, an idle vehicle first 

selects a part to move and then determines the destination of the selected part. In 

a pull-based rule, on the other hand, a work center with the highest need for part 

replenishment is selected first. Then, a part is selected among a set of parts which 

can move to the selected work center. Thus, the two AGV dispatching rules—push 

and pull—have their own characteristics. In the push-dispatching rule, the parts in 

the outgoing buffers of work centers are a major concern, while the incoming buffer 

status of each work center is a major decision factor in the pull-dispatching rule. 

By pairing the part and process selection functions, numerous different push and 

pull rules can be generated. The following part and destination selection rules were 

included in the investigation. Some of these rules were adopted from the literature 

(Egbelu and Tanchoco, 1984; Russel and Tanchoco,1984). 

1. Part selection rule 

• Longest waiting time rule (LWT): select a part with the longest waiting 

time. 

• Minimum remaining outgoing queue space rule with longest waiting part 

(MROQ): select a longest waiting part which is in the output buffer with 

minimum remaining queue space. 

2. Process selection rule 

• Longest inter-arrival time rule (LIT): select a work center which has ex­

perienced the longest inter-arrival time of parts since the last job arrival. 

• Maximum remaining incoming queue space rule (MRIQ): select a work 

center with maximum remaining queue space at input buffer. 
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Table 3.1: Push and pull AGV dispatching rules 

Rule number Part selection Process selection 

Push 3 
4 
5 
6 

1 
2 

LWT 
LWT 
LWT 
MROQ 
MROQ 
MROQ 

MWQ 
LIT 
MRIQ 
MWQ 
LIT 
MRIQ 

10 
11 
12 

LWT 
LWT 
LWT 
MROQ 
MROQ 
MROQ 

MWQ 
LIT 
MRIQ 
MWQ 
LIT 
MRIQ 

• Minimum work-in-queue rule (MWQ): select a work center with minimum 

incoming queue size in terms of processing time. 

Twelve different push and pull rules, as shown in Table 3.1, were included to 

investigate the effect of vehicle-initiated rules. 

Push-based AGV dispatching procedure 

Push-based procedure selects a part (source) first, then determines to where 

(destination) it should be moved. Once the source and destination are determined, 

an AGV is selected to perform the selected load movement. When selecting a part, 

a set of workstations (source) that are not assigned any AGV to pick up their loads 

is first determined. Then, a part is selected from the output buffers of this set of 

workstations according to the part selection rule specified. If no such a station is 

found, or no part is selected, the procedure is aborted. 

Once a part is selected from the set of workstations, a destination for the part 
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will be determined according to the process selection rule specified. The input buffer 

of the destination must not be full. If no destination is possible for the part, another 

part from the source set will be picked. 

When a source and a destination are determined, an idle AGV will be selected 

to perform the part movement. If no AGV is idle, the procedure is aborted. 

Pull-based AGV dispatching procedure 

Pull-based AGV dispatching procedure first selects a workstation (destination) 

which can receive parts according to the process selection rule specified. Then, a list 

of parts which can be moved to this selected workstation is identified from the output 

buffers of other workstations. Finally, the part selection rule is applied on this list to 

select a part (source). 

AGV System Description 

Generally, an AGV system contains four major components: (1) the transport 

network, (2) the vehicles, (3) the interface between the production system and AGVs, 

and (4) control system. There are basically three types of transport network: single 

line, simple loop, and network type. The network type system requires more complex 

control logic, especially when AGVs move along the line bidirectionally. To simplify 

the control over collision and blocking problems, unidirectional path is commonly 

used in the network type configuration. Six types of automated guided vehicles are 

available: unit load, towing, pallet truck, fork truck, light load, and assembly line 

vehicles (Miller and Walker, 1990). Among them, the unit load vehicles become more 

popular recently. 
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Figure 3.1: A hypothetical FMS 

The FMS system considered in this simulation study is shown in Figure 3.1. 

The track layout is a network type, and AGVs move unidirectionally through the 

network. The network is subdivided into nonoverlapping zones so that no more than 

one vehicle is permitted within a zone at any time, prohibiting the collisions between 

AGVs. The zones are identified by a set of control points, at which the AGV receives 

the command from a control computer such as wait, move, change velocity. Twenty 

control points are identified in the FMS, containing pick-up, drop-off, diverging, and 

converging points at intersections. 

There are nine workstations including seven machine centers, one load station, 

and one unload station. Each machine center consists of one machine, one input 

buffer, and one output buffer, except the machine centers MC 6 and MC 7. Each of 

them contains two identical machines, one input buffer, and one output buffer. The 
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interface between workstations and AGVs occurs at the input and output buffers of 

workstations. At every workstation, AGV picks up a part from the output buffer and 

deliver a part to the input buffer. 

Petri Net Modeling of the AGV and FMS 

The FMS simulator developed in this study comprises two subsystems: an AGV 

dispatcher and a Petri net-based FMS. The AGV dispatcher is responsible for dis­

patching AGVs in a Petri net model. The hardware components of FMS were modeled 

with Petri nets. 

Petri net modeling is becoming attractive for analyzing and simulating man­

ufacturing systems (Peterson, 1984; Kodate, et al., 1987; Cheng, 1987; Beck and 

Krogh, 1986; Bruno and Morisio, 1987; Vallete, 1984; Martinez, et al., 1987). For 

more details about Petri nets, readers are referred to Peterson (1984). Basically, 

Petri net is capable of modeling the multi-condition processes that has concurrency 

and cooperation. A Petri net consists of four parts; namely, a set of places P, a 

set of transition T, flow relations F, and initial marking of tokens Mq. Pictorially, 

places are represented by circles, transitions by bars, flows by arcs, and tokens by 

dots. Places in a Petri net could represent waiting conditions for program execution; 

transitions could represent occurrence of events in a real system; and the token would 

then correspond to the number of occurrence of the events. The resulting interpreted 

net with its marking simulates the synchronization of the events. The evolution of 

tokens indicates which conditions cause a transition to fire (to be enabled). The most 

important modeling property of Petri net is the ability to represent concurrency and 

conflict. 
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The Petri net exploited in this study allows colored tokens, inhibited arcs, and 

capacitated, timed places to model and simulate the AGV system. Place and token 

objects were classified to facilitate the modeling of FMSs. The classified places cor­

respond well with physical elements of the FMSs (See Table 3.2). Each place object 

has its own attributes and allows only the specific token types. In the current Petri 

net modeling, token objects are classified as active tokens or passive tokens. The ac­

tive tokens such as vehicles, machine resources, personnel resources, robots can move 

to next places voluntarily. The AGV tokens are controlled by the AGV dispatcher 

during the simulation. Passive tokens such as jobs, pallets, and fixtures cannot move 

without being combined with active tokens. 

The Petri net model for the FMS is shown in Figures 3.2, 3, and 4. Figure 3.2 

shows a Petri net model at a transportation level where AGV movement is the major 

focus, and work stations are abstracted for the detail modeling. The zone control 

logic is represented by using inhibited arcs which have circular head instead of arrow. 

Pick up and delivery processes are associated with PU and DL places. AT places 

represent the places where idle AGVs are waiting. 

Figures 3.3 shows the detailed models for the machine center with two machines, 

and Figure 3.4 shows the load station and the unload station. Each machine center 

consists of one input and one output buffer (IB, OB), operations (OP) and machine 

resource available (RA) places. The job token in IB place moves to OP place being 

combined with a machine token whenever one of two machines is available. After 

processing in the OP place, the job token moves to the OB place, and machine 

token moves to the RA place. At load and unload stations, job tokens are created 

and deleted. While the load station contains a job creation (JC) place in which job 
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Table 3.2: Place objects for Petri net modeling of FMSs 

Objects Mnemonic 
name 

Token types® 
through input arcs 

Attributes^ 

Operation OP (A,J,P) MTBF, Process time 
Decision arc 

Input buffer IB J or (J,P) Capacity 
Token link method 

Output buffer OB J or (J,P) Capacity 
Token link method 

Resource 
available 

RA A 

Job creation JC No token Token creation rule 
Job deletion JD J 
Control point CP C or (C,J,P) Decision arc 
Line LN C or (C,J,P) Process time 

Decision arc 
Transporter 
available 

TA C Decision arc 

Pick-up PU (C,J,P) Pick-up time 
Delivery DL (C,J,P) Delivery time 
Job storage JS J Capacity 

Token link method 
Pallet storage PS P Capacity 
a. Token types. 

A; Autonomous tokens (machines). 
C: Controlled tokens (vehicles). 
J: Job tokens. 
P: Passive tokens except job tokens (pallets). 

* A combined token is represented as a turple of each token type. 
b. The capacity of every place is one except IB, OB, JS and PS. 
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Figure 3.2: A Petri net model of an FMS at transportation level 
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Figure 3.3: A Petri net model of a machine center with two machines 

tokens are created, the unload station contains a job deletion (JD) place to delete 

the job tokens. When a part is removed in the unload station, the separated pallet is 

stored in pallet storage (PS) place. In the load station, a job in the job storage (JB) 

and a pallet in PS are combined according to a job release rule. The job release rule 

is invoked when the output transition of these places are enabled in order to select 

appropriate tokens. 

Besides the inherent advantages of Petri net modeling, the simulation of an AGV 

system in FMSs using Petri net presents several advantages. 

1. The synchronous and asynchronous mechanism of FMSs can be easily modeled. 

Also, bidirectional as well as unidirectional AGV systems are easily modeled. 

2. A simulation program is easily developed by using the Petri net mechanism. 
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Figure 3.4: A Petri net model of load/unload stations 
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3. Animation of a simulated system can be accomplished by using a Petri net 

graph and objects that correspond with the physical elements of FMSs. The 

validation of simulation model is possible by an interactive animation of the 

Petri net graph. 

The Petri net modeling has limitations in representing high-level control systems 

of FMSs. While low-level control systems (i.e., machine level control systems) can be 

well represented in Petri nets, the high-level control systems which require complex 

decision making process including the analysis of system status and historical data are 

difficult to model in Petri nets (Valette, 1984; Camurri and Frixione, 1990). That is 

the reason why AGV dispatcher was not implemented in Petri nets. When additional 

high-level control rules such as scheduling rules are needed to resolve conflicts in the 

Petri net model, external modules must be added. 

Experimental Design and Assumptions 

Assumptions 

Several assumptions were made to keep the investigation in a manageable scope. 

The following assumptions were held throughout the investigation. 

1. Eight job types are to be produced. Their processing times and routings are 

shown in Table 3.3. 

2. A job is loaded into the system at load station when the corresponding pallet 

is available. When multiple jobs exist, the job type with small number of jobs 

launched is released whenever it is possible. 
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Table 3.3: Job routings for a hypothetical FMS 

Job type Routing Process time (min) Par mix 
1 1,2,(7,8),6,9 5,16,(30,30),20,5 8 
2 1,(3,4),(7,8),5,9 5,(16,16),(30,30),10,5 8 
3 1,(7,8),2,(3,4),9 5,(30,30),15,(15,15),5 8 
4 1,2,(7,8),6,(3,4),9 5,10,(20,20),10,(10,10),5 8 
5 1,4,3,5,(7,8),9 5,16,20,10,(10,10),5 8 
6 1,2,6,(7,8),(3,4),9 5,10,10,(30,30),10,5 8 
7 1,(3,4),5,6,(7,8),9 5,(10,10),10,10,2G,5 8 
8 1,(7,8),(3,4),5,6,9 5,(30,30),(12,12),10,10,5 8 

* Routing number. 
1:L0AD 2:MC1 3:MC2 4:MC3 5:MC4 
6;MC5 7:MC6 8;MC7 9;UNL0AD 

* The routing numbers in a parenthesis means alternative routings. 

3. Parts at each machine centers are processed on a First-come First-served basis. 

4. Machine breakdowns are excluded in this study. 

5. AGVs are unit load vehicles and they travel at 120 feet/min. Pick-up and 

delivery times are 0.5 minutes respectively. 

6. The travel of AGVs between two locations will follow the shortest path possible. 

7. Each AGV will wait in front of the work station (AT places in the Petri net 

model) after unloading a part on to input buffer. 

8. Each pallet type has the same number of pallets. 

Minimum number of AGVs and buffer capacity 

In order to reduce the effect of the number of AGVs, the minimum number of 

AGVs which can perform target production must be determined. The detail of the 
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analytical procedure for obtaining the minimum number of AGVs is described in 

Appendix. A minimum number of 2 AGVs were determined under the assumption 

that a target production rate is 60 per 8 hour shift. From simulation experiments, 

it was found that the output rate of the system with 2 AGVs was lower than the 

output rate of the system with 3 AGVs. But, increasing the number of AGVs more 

than three did not improve the performance of the system. For the rest of simulation, 

therefore, three AGVs were used in the system. 

Since the AGV utilization with three AGVs was about 87 %, the shop is con­

sidered busy. It was shown in the literature (Egbelu and Tanchoco, 1984) that AGV 

selection rule has little effects on the system performance than part and process selec­

tion rules when AGV resource is rather restricted (i.e., busy shop). When there are 

several AGVs waiting for mission, the least utilized AGV is selected in this simulation 

study. 

To determine the buffer capacity, a number of initial simulation runs was accom­

plished. When it was assumed that infinite number of pallets is in the system, buffer 

capacity of three gives the best result in terms of output rate and work in process. 

Therefore, all buffers are assumed to have capacity of three. 

Simulation Output Analysis 

To evaluate the performance of AGV dispatching rules, the analysis of simulation 

output was based on steady-state statistics of output rate. Initially, there is no part 

in the system, all machines are idle, all available pallets are at loading area, and 

AGVs are idle (i.e., each machine token is at the corresponding RA place, pallet 

tokens are at PS place, and each AGV token is at an AT place in the Petri net 
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model). After the steady-state point was reached (i.e., average output rate shows to 

be stable), the simulation was executed for 4320 minutes, and steady-state statistics 

were estimated. To decrease the bias in the estimation of mean values, the transient 

state of simulation was excluded from the output collection. 

The model validation is accomplished using an interactive animation of a Petri 

net model. The token movements in the Petri net model are graphically displayed 

so that false modeling can be detected. When a transition fires or a shop locks, the 

related information is displayed to users. 

Table 3.4 summarizes the simulation results of different dispatching rules on the 

average output rate with different number of pallets in the system. As the number 

of pallets increases, the shop locking also increases. The detailed explanation about 

shop locking phenomenon in AGV systems can be found in the literature (Egbelu 

and Tanchoco, 1984). While seven rules show shop locking under infinite number of 

pallets, only one rule (pull rule with MRIQ-fMROQ) shows shop locking when two 

pallets for each job type is available in the system. This confirms the fact pointed out 

in the literature (Sabuncouglu and Hommertzheim, 1989) that the large number of 

parts in the system increases the possibility of shop locking due to excessive congestion 

and traffic on the shop floor. It is also shown that, in general, the average output rate 

increases as the number of pallets increases from 2 to 3, but drops once the number 

of pallets goes beyond 4. Hence, the average output rate is not increased by allowing 

the large number of pallets in the system. Too small number of pallets in the system 

also decreases average output rate as well. 

In order to reduce the effect of shop locking on the dispatching rule performance, 

further experiment was performed with the following conditions imbedded: 
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Table 3.4; Result of average output rate/8 hrs 

No. of pallets for each job type 
Rules 2 3 4 5 6 oo 

1 LWT+MWQ 57.5 65.2 68.2 62.6 .59.5 59.5 
2 LWT+LIT 57.5 63.4 66.8 64.0 64.0 64.0 

Push 3 LWT+MRIQ 52.5 62.6 63.4 62.6 64.0 64.0 
4 MROQ+MWQ 55.9 65.3 64.4 62.6 N* N 
5 MROQ+LIT 58.2 63.3 63.2 N N N 
6 MROQ+MRIQ 50.4 62.2 63.5 63.7 58.1 N 
7 MWQ+LWT 58.6 63.6 66.2 66.2 66.2 62.8 
8 LIT+LWT .56.2 65.6 N 65.4 N N 

Pull 9 MRIQ+LWT 52.0 62.1 65.3 59.4 46.0 .50.9 
10 MWQ+MROQ 57.1 65.5 65.2 N N N 
11 LIT+MROQ 57.3 64.8 N N N N 
12 MRIQ+MROQ N N 63.4 57.5 N N 

Overall Average^ .55.7 64.0 65.0 62.7 .59.6 60.24 
a: Shop locking during simulation. 
b: Excluding shop locking occurrences. 

(1) four pallets for each job type is available in the system, 

(2) an AGV will not move the selected parts if 

A. the input buffer of the first machine for the part in load station has only one 

remaining space, and 

B. the output buffer of the part to be moved has more than one remaining space, 

and the, input buffer of the next work station has only one remaining space. 

These two conditions are included in the experiment in order to provide the 

maximum output rate, and to reduce the shop locking at the same time. Condition 

2 aims at reducing the shop locking by not performing the load movement that has 

high possibility of causing shop locking. 
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Table 3.5: Result of average output rate under two conditions 

Output rate 
Rules Mean/ 

8 hrs 
Std. t 

1 LWT+MWQ 67.6 2.20 1.284 
2 LWT+LIT 66.3 0.97 1.572 

Push 3 LWT+MRIQ 66.3 1.18 1.292 
4 MROQ+MWQ 66.0 1.92 0.638 
5 MROQ+LIT 63.2 1.76 -0.895 
6 MROQ+MRIQ 64.8 1.12 0.022 
7 MWQ+LWT 63.8 1.37 -0.712 
8 LIT+LWT 63.6 0.98 -1.199 

Pull 9 MRIQ+LWT 64.8 1.80 0.014 
10 MWQ+MROQ 62.8 1.37 -1.442 
11 LIT+MROQ 63.3 1.20 -1.229 
12 MRIQ+MROQ 64.8 1.76 0.014 
Overall Average 64.8 

Table 3.5 shows the simulation result in average output rate under the above 

conditions. The shop locking was not observed at all. In addition to mean values, 

estimated standard deviations and t statistics are included in the table. The t statis­

tics are calculated under the hypothesis that the average output rate of a rule is same 

as the overall average output rate, 64.8 per 8 hours. From the table, it is shown that 

there is no significant difference between the average output rate of any rule and the 

overall average output rate at 5% significant level since all |(| < t(8; 0.025) = 2.306. 

Although the significant difference between the average output rate of any rule 

and the overall average output rate is not noticed, a pairwise comparison was done to 

see if any rule is particularly better. The statistical procedure is outlined as follows 

(Cox, 1987): 
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Hrp : m - jxj =0 

HQ : m - fij 7^ 0 

ViZÎL 

^ ' i / { n i - l )  +  s j / { n j  - 1 )  

Note that t j ^ j  and f j ^ j  are the t  statistic and the degree of freedom respectively 

for the hypothesis that average output rates of rule i and rule j are same. Also, 

5,j, and raj are the estimated mean and standard deviation of average output rate, 

and the number of samples from the simulation output with rule i. The statistics, as 

represented in the Table 3.6, show that there is no significant difference in average 

o u t p u t  r a t e  b e t w e e n  a n y  t w o  r u l e s  s i n c e  \ t i j \  <  0 . 0 2 5 ) ,  f o r  a l l  i  a n d  j .  

Concluding Remarks 

A Petri net-based simulation model of an FMS with an AGV system was devel­

oped and used to investigate the effect of the AGV dispatching rules on the system 

performance. Average output rates was used to compare the performance of 12 

vehicle-initiated AGV dispatching rules. Although it is difficult to develop a basic 

model, based on the simulation analysis, which will include all different possibilities, 

the following conclusions can be made: 

1. The shop locking can be effectively decreased by decreasing the number of 

pallets in the system, thus, the system performance can be maximized. But, 
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Table 3.6; t statistics under the hypothesis that average output rates of a pair of 
rules are same 

Rule 2 3 4 5 6 7 8 9 10 11 12 

1 0.541 0.521 0.548 1.562 1.134 1.466 1.661 0.985 1.852 1.716 0.994 
• (11) (12) (16) (15) (12) (13) (11) (15) (13) (12) (15) 

2 0.000 0.139 1.543 1.012 1.489 1.958 0.734 2.085 1.944 0.746 
(15) (12) (12) (16) (14) (16) (12) (14) (15) (12) 

3 0.133 1.463 0.922 1.383 1.760 0.697 1.936 1.783 0.708 
(13) (14) (16) (16) (15) (14) (16) (16) (14) 

4 1.075 0.540 0.933 1.113 0.456 1.357 1.192 0.461 
(16) (13) (14) (12) (16) (14) (13) (16) 

5 -.767 -.269 -.199 -.636 0.179 -.047 -.643 
(14) (15) (13) (16) (15) (14) (16) 

6 0.565 0.806 0.000 1.130 0.914 0.000 
(15) (16) (13) (15) (16) (14) 

7 0.119 
(14) 

-.442 
(15) 

0.516 
(16) 

0.275 
(16) 

-.448 
(15) 

8 -.586 
(12) 

0.475 
(14) 

0.194 
(15) 

-.596 
(13) 

9 0.884 
(15) 

0.693 
(14) 

0.000 
(16) 

10 -.275 
(16) 

-.897 
(15) 

11 -.704 
(14) 

* The figure in the paranthesis represents the degree of freedom. 
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too small number of pallets decreases the output rate due to limited part flow 

in the system. 

2. In a busy FMS, the vehicle-initiated rules both push-based and pull-based rules 

perform equally well in terms of average output rate when the shop-locking is 

significantly reduced by (1) restricting the number of pallets to the level that 

provides the maximum output rate, and (2) avoiding the load movement which 

has high possibility of causing shop-locking. 

In this study, the performance of push-based and pull-based AGV dispatching 

rules were investigated when the FMS was set in a busy state. The behavior of the 

dispatching rules in a non-busy shop would be an interesting extension of the study. 
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Appendix: The Minimum Number of AGVs 

The desirable number of AGVs to accomplish the given load movements (it is 

assumed that target production plan and job routings are known) must be determined 

when the AGV dispatching rules are investigated. Because too many AGVs may 

create a higher possibility of collision and blocking and hence prohibit the efficient 

control of AGVs, the minimum number of AGVs needed to perform the assigned 

tasks was considered in order to minimize the effect that the number of AGVs has 

on the dispatching rule performance. Maxwell and Muckstadt (1982) constructed 

a linear programming model to obtain the minimum number of AGVs. But, they 

ignored random effects in the system, specifically, the location of AGVs and parts at 

a given time. The following section describes an extended procedure to determine the 

minimum number of AGVs needed considering the random effects under steady state 

when the idle time of the AGVs is ignored. With the information on the minimum 

number of AGVs determined analytically, the minimum number of AGVs considering 

the time-dependent effects will be determined from the experimental simulation. 

Let F ( i , j )  be the required flow matrix from i  to j  node (i.e., pick-up or delivery 

points) for the movements of parts during a specified working time, Tw The required 

f l o w  m a t r i x  i s  o b t a i n e d  f r o m  t h e  t a r g e t  p r o d u c t i o n  r a t e  a n d  j o b  r o u t i n g s .  L e t  D { i , j )  

be the transportation time from i to j node obtained by the shortest route. It is 

assumed that there are always parts waiting for an AGVs service. The probability 

that the AGV is waiting at j node in steady state, Pw{j), is 

P w l i )  = ̂  F(t, j)/ " £  " £  F { i , j )  
i=l i=lj=l 

Also, the probability that i-th pick-up node calls an idle AGV in steady state, P c ( i ) ,  
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IS 
n n n 

P 4 i ) =  
j=l i=lj=l 

Complete movement of a load includes (1) empty vehicle moving to a pick-up 

point, (2) pick up a part, (3) moving to a drop-off point with the loaded part, and 

(4) delivery. 

The required average transportation time for the empty vehicle, T y ,  is 

n n n n 

i=lj = l i = l j = l  

And, the required average transportation time for l o a ded vehicle, Tp, is 

n n 

= E E 
i = i j = i  

Letting / and u be the pick-up and delivery time of a part at each work station, the 

pick-up and delivery time for total part flow, T/, is: 

n n 

ri = E E J) •( '  + "* 
i = l j = l  

And the minimum number of AGVs required to accomplish the load movements 

during Tw can be obtained: 

Minimum number of AGVs = (Tp + Ty + 
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GENERAL SUMMARY 

In this dissertation, a computer-aided simulation tool was presented. It is based 

on Conserved nets which are a subclass of Petri nets to provide a formal and graphical 

modeling language. The proposed Conserved nets are shown to be a good modeling 

tool for the analysis and design of FMSs. They provide a simple analysis procedure 

for the properties of Petri net models such as conservativeness, liveness, safeness, 

and boundedness. Furthermore, simulation models can be easily obtained under the 

modeling logic of Conserved nets. To facilitate the simulation modeling process, the 

Petri net objects (places and tokens) are hierarchically classified to correspond to 

hardware components of FMSs such as machines, AGVs, robots, pallets, and buffers. 

Conserved nets are not appropriate for modeling high-level control systems. 

These control systems are difficult to represent in Petri nets including Conserved 

nets. That is the reason why the real-time control rules in high-level control systems 

of FMSs are separately modeled. In executing a Petri net model, several conflicts 

may occur. To resolve the conflicts, additional procedures are required. The high-

level control systems are modeled separately using a control specification language 

and integrated with a Petri net model so that they resolve conflicts in Petri net 

execution. 

In this simulation tool, several systems such as Petri net modeling, control rule 
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modeling, token player, and output analysis have been developed in order to be 

extended and interfaced with other future systems. It was programmed by using the 

Turbo-C language under a micro-computer with MS-DOS and EGA graphics. 

Generally, there are several advantages in the Conserved net-based simulation 

tool. 

1. Flexibility in modeling hardware components of FMSs 

2. Simplicity in modeling process 

3. Simple development of simulation executive 

4. Modularity of simulation program 

5. Animation 

It is uncertain how the modeling power of Conserved nets compares with general-

purpose simulation languages (e.g., GPSS, SLAM, SIMAN, etc.) in creating simula­

tion models, however, like the general-purpose simulation languages, the Conserved 

nets provide more flexible models than automatic code generators (Haddock, 1987; 

Mathewson, 1985 and 1989) and special-purpose simulation packages. Furthermore, 

the modeling processes will be aided by classified Petri net objects which correspond 

to hardware components of FMSs. The simulation executive (token player) can be 

easily implemented by employing transition enabling and firing rules. The Petri net 

objects and separated modules of high-level control rules make the simulation pro­

gram modular, hence, the modification and enhancement of the program is easily 

performed. Animation of the simulation model is accomplished by animating Petri 

net graphs. As shown with several examples, Conserved net models resemble the 
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physical configuration of FMSs. Additional models or graphic display of the simula­

tion model are not required. 

To accomplish a successful simulation of FMSs, there are still several require­

ments that need further study. 

1. Extended Petri net objects 

2. Models of diverse control rules 

3. Output analysis specially for the simulation of FMSs 

4. Experiment aid (e.g., capacity planning for a given FMS prior to the simula­

tion). 

5. Optimizing design combined with the simulation 

In this study, 13 place objects are classified to model hardware components of 

FMSs. We do not believe that any real FMS can be modeled efficiently by these place 

objects. More extensive and diverse-purpose place objects are required. As discussed 

in Part II, we are considering an additional tool, a Petri net object definition system, 

for creating new Petri net objects. According to the application, a modeler may 

define the required place objects and token objects under the system. Then users 

could make a model using the predefined objects. 

The proposed control rule specification language has limitations to represent 

more complex rules. We are considering an interface mechanism with-other systems 

(e.g., expert system). 

It is believed that the output analysis in simulation of FMSs has its own char­

acteristics. For example, the state of a system may not be steady even if the average 
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number of jobs in the system is stable (even constant). This results from the fact 

that there is a constant number of pallets in the system. To detect the steady state, 

special procedures are required. 

The optimal design of FMSs with simulation (Nandkeolyar and Christy, 1989; 

Floss and Talavage, 1988; Mellichamp and Wahab, 1987; Talavage and Hannam, 

1988) is a difficult job because the simulation is an evaluative technique: it only 

provides estimates of performance measures. To obtain the optimal decision regarding 

the design of FMSs, an evaluative technique must be interfaced with a generative 

procedure which generates alternative sets of decisions. Usually this procedure is 

time-consuming because generating alternative decisions requires a large number of 

simulation runs. To achieve an automatic design procedure, the experiment support 

system, output analysis system, new alternative generating system, and automatic 

model modification system must be integrated with the simulation software. 
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APPENDIX: TOKEN PLAYERS 

Generally, discrete-event simulation systems are classified into three main fam­

ilies according to the strategy of modeling and simulation execution: event-based, 

activity-based, and process-interaction. For the simulation executive (token player) 

of Petri nets, these approaches can be implemented. Simply, a Petri net model can 

be considered to consist of sets of events, activities, and relationships between events 

and activities. The event (transition) can be executed (fired) only when it meets the 

transition enabling conditions. Therefore, a Petri net is executed simply by scanning 

all transitions at each cycle until no more transitions can be fired. This approach 

is actually based on the activity-scanning strategy. It is not surprising that some 

Petri net simulation software adopted the activity-based approach. To implement 

this approach, some considerations are necessary to reduce the computation time in 

scanning all of the transitions at a time beat. This was done by scanning the tran­

sitions that have at least one input place marked with tokens (Alanche, et al., 1984; 

refer to Part II), or by extending three-phased approach (Evans, 1981). 

Event-based approach can also be implemented. Only the transitions which 

satisfy the enabling conditions are stored in a current event list. When a transition 

in the current event list is fired, the current event and future event lists are updated 

by checking the neighborhood transitions connected by the places involved in the 
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transition firing. The time scan is carried by fetching a record in the future event 

list. 

The process-interaction approach views the process as the temporary entity flow 

(e.g., parts in FMSs). In the application of token player of our Petri net exploited in 

this thesis, the process is viewed for the active tokens. Therefore, another approach is 

possible by manipulating future event list which stores places containing active tokens 

in processing state, and current event list containing places which have active tokens 

in waiting state. But, like activity-scanning approach, the transitions connected with 

places in the current event list should be scanned at a time beat. 

The developed simulation tool provides two token players: Transition-based 

token player and Place-scanning token player. The Transition-based token player 

is based on the event-based approach, and Place-scanning approach combines the 

activity-scanning and process-interaction approaches. 

Transition-based token player 

For this token player, two-doubly linked lists are constructed: Firing Transition 

List (FTL) and Processing Place List (PPL). FTL contains the records for those 

transitions which meet the transition enabling conditions. The transition records 

are linked in the decreasing order of waiting time of tokens in the input places of 

that transition. PPL contains the records for those places in which active tokens in 

processing state are marked. The place record includes two attributes; place number 

and scheduled finishing time of process imposed to an active token in that place. The 

records are linked in the order of these times. The token player is executed with the 

following procedures. 
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Phase 1: Transition firing 

1.1 Fetch and remove the transition at the head of FTL. 

1.2 Perform arrival and departure processes for the tokens involved in the firing of 

the fetched transition. Update FTL and PPL. 

1.3 Repeat 1.1 and 1.2 until there is no record in FTL. 

Phase 2: Time advance 

2.1 Fetch and remove the record at the head of PPL. Advance simulation clock to 

the scheduled finishing time of the record. Update FTL. 

2.2 Repeat 2.1 while simulation clock equals the scheduled finishing tome of the 

fetched record. 

2.3 Check the termination of simulation. If the current status meets the termination 

condition, then stop. Otherwise, go to Phase 1. 

Place-scanning token player 

For the place-scanning token player, two doubly-linked lists are constructed: 

Waiting Place List (WPL) and Processing Place List (PPL). WPL contains the 

records for those places in which active tokens in waiting state are marked. It has 

two main attributes: place number and the time switched to a waiting state in the 

place. The records in WPL are linked in decreasing order of this time. 
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Phase 1; Place scanning 

1.1 Fetch and remove one by one from the head of WPL, and check if any output 

transition of the fetched place can be enabled. If the transition meets the 

enabling conditions, perform departure and arrival procedures according to the 

transition firing rules. 

1.2 Repeat 1.1 until there is no place in WPL whose output transitions can be 

enabled. 

Phase 2: Time advance 

2.1 Fetch and remove the record at the head of PPL. Advance simulation clock to 

the scheduled finishing time of the record. Update FTL. 

2.2 Repeat 2.1 while simulation clock equals the scheduled finishing tome of the 

fetched record. 

2.3 Check the termination of simulation. If the current status meets the termination 

condition, then stop. Otherwise, go to Phase 1. 

Comparison of complexity 

Two token players presented are different each other. To compare the complexity, 

the following notations are used. 

k: the number of tokens in a net 

the average number of output arcs of a place 

n2' the average number of input arcs of a place 

713: the average number of output arcs of a transition. 
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n^\ the average number of input arcs of a transition 

m: the average number of transitions to fire at a time beat 

For a performance measure, the maximum number of places to be checked in 

order to fire m transitions in a time beat is considered. 

1. Place-scanning token player 

Complexity = kni{n^ + n^)[m + 1) 

= 2kn^[m + 1), if = «2,03 = «4. 

2. Transition-based token player 

Complexity = (n^ + n^) {ni + n2)m 

2 — Sn^Wgm, if nj = n2,n^ = n^. 

Usually, a Petri net model has same number of input arcs and output arcs at 

each node (i.e., n-^ = and «3 = 724). In this case, the transition-based token 

player is better when k{m + 1) > ^nyn. 

Under the place-scanning token player, all marked active tokens in waiting state 

have to be evaluated at each cycle. This gives in efficiency in computation time as 

in the case of activity-scanning approach. It may scan unnecessary places. Rather 

than scanning all places or marked places, only the active tokens in waiting state are 

evaluated at each cycle (note that passive tokens cannot move voluntarily without 

combination with active tokens). This reduction in evaluation provides efficient exe­

cution in case of a busy shop in FMS because very few active tokens are in waiting 

state at a time. 
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The transition-based token player can provide efficient computation time when 

small number of arcs is connected with transitions. To update the FTL at each 

transition firing, however, it is necessary to check the transition enabling conditions 

for the neighborhood transitions. 
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