
www.manaraa.com

Retrospective Theses and Dissertations Iowa State University Capstones, Theses and
Dissertations

1991

A computer-aided simulation tool based on Petri
nets for the design and analysis of FMSs
Dong-Soon Yim
Iowa State University

Follow this and additional works at: https://lib.dr.iastate.edu/rtd

Part of the Industrial Engineering Commons, and the Operational Research Commons

This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University
Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University
Digital Repository. For more information, please contact digirep@iastate.edu.

Recommended Citation
Yim, Dong-Soon, "A computer-aided simulation tool based on Petri nets for the design and analysis of FMSs " (1991). Retrospective
Theses and Dissertations. 9791.
https://lib.dr.iastate.edu/rtd/9791

http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Frtd%2F9791&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Frtd%2F9791&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/rtd?utm_source=lib.dr.iastate.edu%2Frtd%2F9791&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Frtd%2F9791&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Frtd%2F9791&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/rtd?utm_source=lib.dr.iastate.edu%2Frtd%2F9791&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/307?utm_source=lib.dr.iastate.edu%2Frtd%2F9791&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/308?utm_source=lib.dr.iastate.edu%2Frtd%2F9791&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/rtd/9791?utm_source=lib.dr.iastate.edu%2Frtd%2F9791&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digirep@iastate.edu

www.manaraa.com

INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI
films the text directly from the original or copy submitted. Thus, some
thesis and dissertation copies are in typewriter face, while others may
be from any type of computer printer.

The quality of this reproduction is dependent upon the quality of the
copy submitted. Broken or indistinct print, colored or poor quality
illustrations and photographs, print bleedthrough, substandard margins,
and improper alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete

manuscript and there are missing pages, these will be noted. Also, if
unauthorized copyright material had to be removed, a note will indicate
the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by
sectioning the original, beginning at the upper left-hand corner and
continuing from left to right in equal sections with small overlaps. Each
original is also photographed in one exposure and is included in
reduced form at the back of the book.

Photographs included in the original manuscript have been reproduced
xerographically in this copy. Higher quality 6" x 9" black and white
photographic prints are available for any photographs or illustrations
appearing in this copy for an additional charge. Contact UMI directly
to order.

University Microfilms International
A Bell & Howell Information Company

300 North Zeeb Road. Ann Arbor, Ml 48106-1346 USA
313/761-4700 800/521-0600

www.manaraa.com

!

www.manaraa.com

Order Number 9212207

A computer-aided simulation tool based on Petri nets for the
design and analysis of FMSs

Yim, Dong-Soon, Ph.D.

Iowa State University, 1991

Copyright ©1991 by Yim, Dong-Soon. All rights reserved.

U M I
300N.ZeebRd.
Ann Aibor, MI 48106

www.manaraa.com

www.manaraa.com

A computer-aided simulation .tool based on Petri nets

for the design and analysis of FMSs

by

Dong-Soon Yim

A Dissertation Submitted to the

Graduate Faculty in Partial Fulfillment of the

Requirements for the Degree of

DOCTOR OF PHILOSOPHY

Department: Industrial and Manufacturing Systems Engineering
Major: Industrial Engineering

Approved:

In Charge of Major Work

For the Major Department

For the Graduate College

Iowa State University
Ames, Iowa

1991

Copyright © Dong-Soon Yim, 1991. All rights reserved.

Signature was redacted for privacy.

Signature was redacted for privacy.

Signature was redacted for privacy.

www.manaraa.com

ii

TABLE OF CONTENTS

GENERAL INTRODUCTION 1

Explanation of Dissertation Format 4

PART I. CONSERVED NETS FOR MODELING AND SIMULA­

TION OF FMSS 6

Abstract 7

Introduction 8

A Petri Net for Modeling and Simulation of FMSs 9

Marking 12

Enabling 13

Transition firing 13

Conserved Nets 13

Structural Characteristics of Conserved Nets 20

Liveness of Conserved Petri Net Systems 22

An Example: A Machine Center with a Robot 30

Conclusion and Remarks 37

References 40

www.manaraa.com

iii

PART II. PETRI NET-BASED SIMULATION TOOL FOR THE

DESIGN AND ANALYSIS OF FMSS 42

Abstract 43

Introduction 44

Petri Nets for Simulation of FMSs 46

Specification of Petri nets 46

Petri net objects for modeling of FMSs 48

Well-formed Petri net model 52

Modeling rules for a well-formed Petri net 54

Control Systems in FMSs 55

Job release rule 57

Control of material handling systems 58

Facilities of Petri Net-Based Simulation Tool 60

Petri net graphics editor 61

Control rule modeling 63

Token player and animation 65

Output analysis and results presentation 65

An Example 66

Discussion and Future Study 72

References 75

Appendix: Conserved Nets 77

www.manaraa.com

iv

PART III. PUSH AND PULL RULES FOR DISPATCHING AU­

TOMATED GUIDED VEHICLES IN A FLEXIBLE MAN­

UFACTURING SYSTEM 82

Abstract 83

Introduction 84

AGV Dispatching Rules 84

Push-based AGV dispatching procedure 87

Pull-based AGV dispatching procedure 88

AGV System Description 88

Petri Net Modeling of the AGV and FMS 90

Experimental Design and Assumptions 96

Assumptions 96

Minimum number of AGVs and buffer capacity 97

Simulation Output Analysis 98

Concluding Remarks 102

References 105

Appendix: The Minimum Number of AGVs 107

GENERAL SUMMARY 109

BIBLIOGRAPHY 113

ACKNOWLEDGEMENTS 118

APPENDIX; TOKEN PLAYERS 119

Transition-based token player 120

www.manaraa.com

Place-scanning token player

Comparison of complexity

V

121

122

www.manaraa.com

1

GENERAL INTRODUCTION

A flexible manufacturing system (FMS) is a production facility consisting of flex­

ible, numerically-controlled machines or work stations, automatic material handling

systems, and control systems. Such systems offer several benefits compared with con­

ventional manufacturing systems; shorter manufacturing cycle times, better resource

utilization, decreased work-in process inventory, and flexible manufacturing capabil­

ity. Implementation of FMS, however, creates serious problems for designers and

engineers who are responsible for the design and operation of these systems. Modern

FMSs are complex with a high degree of flexibility. They need a flexible operation

and dynamic control over a turbulent environment. The technique used in FMS is to

identify work pieces uniquely and to control their movements individually between

the work stations assigned to perform the operation required. As a result, many

different types of work pieces are simultaneously in-process, each following its own

routing through the system. Because of these flexible characteristics, the planning,

design, and control of FMSs are difficult tasks.

Discrete-event simulation is a widely used tool to solve these problems. The dy­

namic environment of manufacturing systems can be well analyzed using simulation

techniques. In simulation, a computer is used to evaluate a model numerically over

a time period of interest, and data are gathered to estimate the desired true char­

www.manaraa.com

2

acteristics of the model. The main reasons for using simulation in FMSs are (1) to

measure the performance and equipment utilization of the system, (2) to compare the

performance of alternative designs, (3) to develop operating strategies for the control

of work flow, and (4) to identify bottlenecks and other weaknesses in the system.

Even though there are many tools now available for the simulation of manufacturing

systems, the successful use of simulation is somewhat difficult. Failure is mainly due

to (1) complexity of the modeling language, (2) differences between the simulation

modeling concept limited by a simulation language and the system to be modeled,

(3) difficulty in validation and verification of a model, and (4) no rigorous technique

for the analysis of simulation output.

This dissertation is directed to the development of a computer-aided simulation

tool for the design and analysis of FMSs. A computer-aided simulation tool is one

which aids all activities of the simulation life cycle; modeling, model validation and

verification, experiments, output analysis, and results presentation. To provide a

successful environment for simulation projects, the separate modules of the simulation

software must be integrated. The integrated software provides automatic-processing

facilities to aid decision makers. This research is one step in this direction. The main

objectives of this dissertation are:

• To develop a subclass of Petri nets suitable for modeling and analyzing FMSs.

• To propose the modeling methodologies for simulation of FMSs consisting of

hardware components and control systems.

• To present a computer-aided simulation tool based on the new subclass of Petri

nets.

www.manaraa.com

3

In this study, a subclass of Petri nets, Conserved nets, is proposed and imple­

mented in a syntax-oriented graphics tool for the creation of the simulation model of

hardware components in FMSs. Petri nets have proved to be a powerful tool to model

systems that exhibits synchronization and cooperation. To exploit Petri nets as a

successful simulation modeling language, however, several extensions are required.

Conserved nets are developed by extending ordinary Petri nets in order to be used

for the modeling, analysis, and simulation of FMSs.

Petri nets provide a graphical simulation language instead of complex textual

languages. The simulation model is constructed with primitive Petri net objects

which are classified to correspond to hardware components of FMSs. Under the

guidance of the interactive graphics tool, a model is incremented in a top-down

fashion with the Conserved net modeling logic which guarantees conservativeness

and liveness of the Petri net model. Model validation is performed by exploiting

useful properties of Conserved nets and use of a Petri net animation.

Besides Petri net modeling of hardware components in FMSs, high-level, real­

time control systems in FMSs must be modeled easily and accurately. Because the

high-level control systems have an abstract and informal nature, the modeling of these

systems is more difficult compared with modeling of hardware components. Although

Petri nets are suitable to represent some features of FMSs, such as the distributed

and concurrent nature of processes or the synchronization and conflicting properties

among tasks in the use of shared resources, they have drawbacks to model high-

level control systems. Instead of using Petri nets, the high-level control systems are

modeled separately using a control rule specification language developed to facilitate

the control rule modeling process.

www.manaraa.com

4

The three subsystems—token player, Petri net model, and high-level control

systems—interface each other during simulation. The token player executes the move­

ments of tokens in a Petri net model, and interfaces with high-level control systems.

The high-level control systems analyze the current status of the Petri net model and

give commands to controllable tokens to resolve conflicts in Petri net execution.

Explanation of Dissertation Format

The format of this dissertation follows the alternate format described in the

Graduate Thesis Manual of Iowa State University. It consists of three parts, each of

them being an individual paper.

Part I; was developed under the guidance of Professor Thomas A. Barta. This part

shows the development of Conserved nets, which are proposed to model, analyze, and

simulate FMSs. A Conserved net is one in which token flows are conserved without

any transformation during Petri net execution. The development of Conserved nets

is mainly due to the fact that Petri net models of FMSs are required to have the

conservativeness property. The structural properties and liveness conditions of the

Conserved nets are described. The modeling and analyzing power of the Conserved

nets is demonstrated with a case study.

Part II; was also developed under the guidance of Professor Thomas A. Barta. This

part develops a Petri net-based simulation tool for the design and analysis of FMSs.

In this tool, Conserved nets are implemented in Petri net objects and modeling logic.

The modeling methods of several high-level, real-time control systems are included.

Finally, the facilities of the developed tool are described, and the strength of the tool

is demonstrated with a case study.

www.manaraa.com

5

Part III: was developed with the help of Dr. Linn who is a professor in the Depart­

ment of Industrial and Manufacturing Systems Engineering, Iowa State University.

This part is an extensive simulation study using the Petri net-based simulation tool

described in Part II. The objective of this study is to investigate the effect of push-

and pull-based AGV dispatching rules in FMSs. A number of push- and pull-based

AGV dispatching rules are proposed and compared via the simulation study. The

developed simulation model consists of two modules: a Petri net model and AGV

dispatcher. Experiment conditions and output analysis are included in the simulation

study.

Finally, the strengths and weaknesses of the developed tool and future study are

included in the general summary. The bibliography contains the references for the

general summary and appendix (token player) and the related literature that are not

listed in the references of each part.

www.manaraa.com

6

PART I.

CONSERVED NETS FOR MODELING AND SIMULATION OF FMSS

www.manaraa.com

7

Conserved Nets for Modeling and Simulation of FMSs

D. S. Yim and T. A. Barta

Department of Industrial and Manufacturing Systems Engineering

Iowa State University, Ames, Iowa 50010, USA

Abstract

In this paper. Conserved nets which are a subclass of Petri nets is proposed to fa­

cilitate the modeling, analysis, and simulation of FMSs. Conserved nets ensure that a

Petri net model has the conservativeness property. From the structural characteristics

of Conserved nets, liveness conditions are easily obtained. While hardware compo­

nents of FMSs are modeled by using Conserved nets, high-level, real-time control

systems in FMSs are separately modeled using the analysis results of the Conserved

Petri net model. For the simulation of FMSs, a Petri net model and a high-level

control system are integrated so that the high-level control system is responsible to

resolve conflicts in the Petri net model. The modeling and simulation procedure is

demonstrated with an example machine center.

Keywords: Petri nets, FMSs, Simulation.

www.manaraa.com

8

Introduction

Basically, a Petri net is capable of modeling a multi-condition process which has

concurrency and cooperation. Because of this capability, Petri nets have been widely

used for the modeling and analysis of communications, operating systems, computer

software and hardware, and manufacturing systems. In addition, Petri nets have

been used as a simulation tool for discrete manufacturing systems.

The modeling and analysis power of Petri nets is well suited for the design of

flexible manufacturing systems (FMSs) including low level control systems. However,

ordinary Petri nets have limitations to describe complex systems. To increase the

modeling power, a number of Petri net families have been proposed. Increasing of

modeling power also increases the complexity and difficulty in analyzing important

properties of a Petri net model such as conservativeness, liveness, safeness, and bound-

edness. As the model becomes complex, analysis based on reachability tree, invariant

analysis, and reduction methods becomes difficult. As a result, two approaches have

been developed. One approach is using subclasses of Petri nets by imposing some re­

strictions in modeling the systems. State machine [1], Marked Graph [2], Free choice

Petri net [3], and Essentially Decision Free net [4] are among the subclasses of Petri

nets. The other approach is modeling a Petri net which has desirable properties a

priori. The synthesis of each resource activity cycle [5] and top down modeling by

stepwise addition of arcs [6] are based on such an approach.

Another problem in the application of Petri nets to FMSs is its limitation to

represent high level decision support systems. The control systems of FMSs are

usually constructed and operated with a hierarchical structure. While low level con­

trol systems—machine level control systems—are well represented by Petri nets [7],

www.manaraa.com

9

however, high level control systems that require high level decision capability with

analysis of global system status and historical data are difficult to be modeled by

Petri nets. A number of techniques have been proposed to combine the Petri nets

with other modeling techniques such as SI nets [8], Expert system [9], and meta rules

[10] in order to model high level control systems.

There are two objectives in this paper.

• To propose Conserved nets which are a subclass of Petri nets in order to facili­

tate the modeling, analysis, and simulation of Petri nets for FMSs.

• To demonstrate the design procedure of a high level decision system which can

be incorporated into a Petri net model developed in this paper.

Conserved nets are proposed to model hardware components of FMSs easily and to

ensure the conservativeness of a Petri net model. From the structural properties of

Conserved nets, the liveness can be easily checked. The high-level control systems

which are responsible for resolving conflicts in a Petri net model is constructed from

the analysis results of the Conserved net model. Through a simulation of a Petri net

model, useful information such as performance measures of a system, and detailed

movements of parts is obtained.

A Petri Net for Modeling and Simulation of FMSs

A Petri net is defined formally as the tuple W = (P , T , A , M) , where P is the

s e t o f p l a c e s (P 1 , P 2 ' ' " ^ t h e s e t o f t r a n s i t i o n s - • • , t m) , a n d A , M

are functions. M is marking of P and the number of tokens in p i is represented as

M{pi). The set of iV = P UT is called a node set and an element of E N is called

www.manaraa.com

10

a node. The connection relationship between node nj and node nj is represented

by A{n^,nj). If a directed arc connects from ni to rij the value of A{ni,nj) is 1.

Otherwise the value of A{ni,nj) is zero.

In addition to ordinary Petri nets, a number of Petri net families have been

proposed to model complex systems by extending Petri nets. We added several

elements to increase the modeling power of a Petri net, and they can be exploited for

the simulation of FMSs.

1. Each place is a capacitated, timed place.

2. Each token is identified as an individual object, and belongs to a certain type.

3. Each output arc of a transition has attached to it a set of token types to flow.

4. Each output arc of a place can have attached to it a predicate for a decision on

token movement.

To model a system with this Petri net, four types of specifications are neces­

sary: specification of places, output arcs of places and transitions, and tokens (see

Figure 1.1). A place represented by a circle has two attributes, time and capacity

represented as PT(pj) and C{pi) respectively. A place has its own capacity to allow

maximum number of tokens. When an arrived token in a place needs a time delay,

the time is imposed on the token immediately. The tokens represented by dots are

flow objects and resources in FMSs. Each token belongs to a certain class (token

type) such as part, pallet, machine, AGV. Movement of some types of tokens in a net

can be controlled by a token control system (high-level control system will be con­

sidered as a token control system). Each token type can assume several attributes.

www.manaraa.com

11

(f %),%))

P T (p i) : Processing time of p ^ .

C(pi) : Capacity ofpj.

{c} : A set of token types.

(d) : Decision specification.

{/!} : Token attributes.

Figure 1.1: Specification of Petri nets for modeling and simulation of FMSs

For example, part tokens need attributes such as routing and processing times. Also,

resource tokens such as machine, robot, AGV, and man can contain a status at­

tribute. Directed arcs represented by arrowed arcs are classified into output arcs of

a transition and output arcs of a place. An output arc of a transition is specified to

allow the flow of specific set of tokens. That is, tokens are combined and divided at

a transition according to the specification of token flow attached to the output arcs

of the transition.

An output arc of a place can be specified to define the decision choices for a

token movement. In Figure 1.2, if there is a token in place p^, it can move to the

transition or (g- The predicates (a) and (b) attached to each arc are related to

decisions of token movement. For example, the state of a machine token can be

either a success or a failure depending on whether the machine is running or down

for repair. According to the state of the token, the token movement is determined.

www.manaraa.com

12

Figure 1.2: Specification of decision arcs

If predicate (a) is "success(pj)" and (b) is "failure(p2^)" respectively, the token with

success state in pj will move to When a predicate is not specified to the output

arcs of a place, a token in a place will select one of output arcs randomly (i.e., select

a transition to fire arbitrary).

Marking

A marking, M, is an assignment of tokens to the places of a Petri net. The

number and position of tokens may change during the execution of a Petri net. Note

that when two different tokens are combined and marked in a place, the total number

of tokens in a net decreases by one due to the combination of two tokens. Even if

the combined token is treated as one token in a net, however, it contains the two

individual tokens. To identify the marking of individual tokens, Mf^{pj) is defined to

r e p r e s e n t t h e n u m b e r o f t o k e n t y p e k i n a p l a c e p j .

The net marking is restricted by the capacities of places. A marked token is

classified as a token in processing state or a token in waiting state. When a token is

assigned to a place which needs time delay, the token becomes the processing state

instantaneously. After finishing the imposed processing duration, the token is in

waiting state. Mp{pj) and Mw{pj) are the numbers of marked tokens in processing

www.manaraa.com

13

state and in waiting state at place j respectively. It is obvious that M { p j) = M p { p j) +

M w (p j) -

Enabling

A transition ^ is enabled when the following conditions meet:

1. the input places connected by directed arcs have more than one token in waiting

state, i.e., Mwipj) > A{pj,t^) for all input places pj of ti, and

2. if fired, the capacity of its output places will not be exceeded, i.e., C(pf^) —

M(pf^) > A{ti,pf^) for all output places pjr. of f j.

Transition firing

The enabled transition can fire instantaneously with the transition firing rules.

When a transition fires, the following events occur concurrently:

1. For all input places connected with directed arcs, the involved tokens are re­

moved, and M{pj) = M{pj) — A(pj,ti) for all input places pj of

2. At the transition, the gathered tokens are combined or divided according to the

specification of output arcs of the transition.

3. For all output places connected by directed arcs, the token is added, and

M{p}^) = M{pf^) + A{tj^,pf^) for all output places of

Conserved Nets

Originally, the marking of tokens under transition firing rule is based on the

deletion and creation of tokens. When a transition fires, tokens in the input places

www.manaraa.com

14

are deleted and new tokens are created in the output places of the transition. In

modeling an FMS, tokens represent resources or jobs in the system. These tokens are

flow objects in the system, and must be conserved in a net. Rather than being based

on the creation and deletion of tokens, the transition firing rule needs to consider the

token movement such that tokens flow in a net without any transformation. After all,

a useful Petri net model should have the conservativeness property from the following

facts as discussed in [11].

• The number of resources is constant over time.

• In a closed queuing system, the number of jobs is constant.

• In an open queuing system, a job token that enters in the system is conserved

until it leaves the system.

Originally, a marked Petri net W = { P , T , A , M) is said to be strictly conservative

[12] if
n

M{pi) = constant, for any reachable marking M.
i=l

Since it is common that, in a Petri net model, several tokens are combined into one

token, and a combined token is divided into several tokens at a transition, strict

conservativeness is not desirable. As a result, weighting vectors could be defined

to allow more broad terms of conservativeness ([12], pp. 82): the marked Petri net

is said to be conservative if the weighted sum of all reachable markings is constant.

Alternatively we may use a more appropriate definition of conservativeness which can

be applicable to Petri nets for the simulation of FMSs. When each original token is

identified as an individual object, a combined token can also be identified as a token

www.manaraa.com

15

with several original tokens. As defined before, let be the number of token

type A: in a place pj. Then, we develop a following definition of conservativeness.

Definition 1.1: A marked Petri net W = { P , T , A , M) is conservative in terms of

each token type if

n
= constant, for any token type k and any reachable marking M.

i=l

This definition says that a marked Petri net is conservative when token flows at every

node are conserved without any transformation in terms of each token type.

Our objective is modeling a Petri net which has the conservativeness property.

This is possible by specifying allowable token flows at every arc between two nodes,

and by properly assigning initial tokens in a net. Our Petri net allows token flow

specification at the output arcs of a transition. The specification of token flows

allows a set of token types through arcs. For example, the specification of token flow,

{(a,6),c}, allows either a combined token of a and b type or a c type token alone.

Note that the combined token is represented as a tuple of individual tokens. Let's

consider several legal and illegal Petri nets in view of conservation of token flows. In

Figure 1.3-(a), place pi has a token with token type a. By firing ij, the token moves

to P2> but a new token with token type b is required to be created in order to be

marked in pg. It prohibits the Petri net from conservativeness. Note that, even if the

token in pi is a combined token with a and b type, the conservativeness will not be

satisfied. Likewise an a type token is deleted and a b type token is created by firing

t2 in Figure 1.3-(b). The Petri net in Figure 1.3-(c) has conservativeness since the

deletion or creation of tokens is not required by firing any transition.

www.manaraa.com

16

(a) Illegal (b) Illegal

{(a,b)}

{(a,b)}

{(a,b)}

(c) Legal

Figure 1.3; Conservativeness of Petri nets

www.manaraa.com

17

To have conservât!veness, a Petri net model must be modeled with certain re­

strictions. These restrictions and requirements for conservativeness will be presented.

For the prerequisite requirements, consider a Petri net without marking of tokens in

a net. Thus, in the following, a net with marking and a net without marking will be

distinguished as defined in [1].

Definition 1.2: A Petri net W = { P , T , A , M) is called a Petri net system, and

G-' = (P, T , A) i s c a l l e d a n u n d e r l y i n g n e t (s i m p l y c a l l e d a n e t) o f a P e t r i n e t s y s t e m W .

Before deriving the modeling rule for a net with the specification of conservative

token flows, we will explain the restrictions on Petri net modeling and determination

of token flows at each node. We call the nets with specification of conservative token

flows Conserved nets which are a subclass of Petri nets. For the Conserved nets, two

basic restrictions were set.

• Tokens with the same type are not allowed to be combined.

• Multiple arcs between two nodes are not allowed.

In a Conserved net, only a disjoint set of token types are combined at a transition.

Also, there should be at most one arc between any two nodes. These restrictions

do not decrease the modeling power of a Petri net. If it is necessary to combine

tokens of the same type (e.g., combination of the same kind of resources to perform

an operation), the tokens may be further classified into different types. By classifying

token types in more detail, combinations of tokens of the same type can be avoided.

By not allowing multiple arcs in a net, there is at most one arc between any two

nodes.

www.manaraa.com

18

Four kinds of token flows occur in a net. The possible token flows at each node

are determined by examining the speciflcation of token types attached to the output

arcs of transitions. Let *-Pnj and be possible input token flow and output token

flow at a node nj in a net G = (P, T, ̂ 4).

1. Input token flows at a place.

The possible input tokens at a place are determined by the union of token sets

specified at the input arcs of the place. If a place p has n input arcs and the

set of allowable token flows, a j, is specified at the i th input arc, the possible

input tokens at p is determined as

* F p =

2. Output token flows at a place.

When a token (combined or original) resides in a place p, it moves along the

output arcs of the place without any transformation (note that there is at most

o n e a r c b e t w e e n a n y t w o n o d e s) , i . e . , F * = * F p

3. Input token flows at a.transition.

The possible input tokens at a transition are determined by the product of

token sets from the output token flows of input places. If a transition t has n

input arcs (i.e., n input places), and possible output tokens at the i th input

places is Fp^, then the possible input tokens of t is:

= Fpi ^ Fp2 X • • • X -̂ pn.

4. Output token flows at a transition.

The possible output tokens at a transition are determined by the product of

www.manaraa.com

19

{(a,b),a}

{c}

Node Possible input tokens Possible output tokens

PI {(a,b)} U {a}={(a,b),a} {(a,b),a}

P2 {c} U {c}={c} {c}

h {(a,b),a}x{c} = {(a,b),a}x{c}=

{(a,b,c),(a,c)} {(a,b,c),(a,c)}

Figure 1.4: Determination of token flows at nodes

token sets specified at output arcs of that transition. When a transition t has

n output arcs, and each arc has attached to it a set of token types Oj, then the

possible output tokens at t is:

Ft = X «2 ^ ^ •

From the above results, the possible token movements at each node can be

determined. An example in Figure 1.4 illustrates the determination of possible token

flows at nodes. To guarantee conservativeness in a net, the input and output token

flows at each node should be same. Finally, we develop the following definition of

www.manaraa.com

20

Conserved nets.

Definition 1.3: G = { P , T , A) in which the specification of token flows is attached

to the output arcs of transitions is called a Conserved net if the following conditions

hold in the net:

1. A { n i , n j) = 1 or 0, for any pair of nodes and n j .

2. When a transition has more than one input place,

any element of * F-p^ ^ any element of * Ffj

where and pj are any pair of input places.

3. = F*, for any transition t .

Structural Characteristics of Conserved Nets

In this section, important characteristics of Conserved nets will be presented.

Before we come to that, some basic definitions in Graph theory will be adopted.

Definition 1.4: In a net, a sequence of places and transitions, is

a directed path from p-^ to pn if transition is both an output transition of place pj

and an input transition of place Pj+i, for 1 < i < n — 1.

Definition 1.5: In a net, a directed path from pj to pn is a directed circuit if pj

equals pn-

Definition 1.6: A subnet G' of G = { P , T , A) is defined as C?' = where

P' E P,T' ^ T, a' g a. All places in a subnet should be able to mark a particular

token type. Similarly, a subsystem W' = {P',T',A',M') oi W = {P,T,A,M) is

www.manaraa.com

21

defined by adding marking M' G M to the underlying subnet G ' = { P ' , A ') .

Definition 1.7; A subnet G' = [P'^A') is a closed subnet if all transitions

connected with P' in G are T'.

From the definition of Conserved nets, the following characteristics are obtained.

Property 1: A Conserved net can be decomposed into subnets for the flow of each

token type.

Remark: Initial tokens in a Conserved Petri net system are also decomposed into

original token types which can be assigned to the corresponding subnets. If de­

composed tokens cannot be assigned to the subnets, the Petri net system is a false

model.

Property 2: A decomposed subnet of a token type flow is a strongly connected,

closed subnet, and consists of several directed circuits.

Property 3: When two decomposed subnets of different token flows share common

paths, the paths start and end with transitions.

Property 4: When two directed circuits in a subnet of a token type flow share

common paths, the paths start and end with places.

The conservation of token flows requires the subnet for a token type to form

circuits. If paths of a token do not form circuits in a net, then conservation will

not be ensured. Therefore, it is necessary that subnets for every token type flow

are constructed to form circuits. This requirement is natural logic in the modeling of

www.manaraa.com

FMSs consisting of sets of shared resources and jobs (also, it is a basic logic in Activity

Cycle Diagram [13]). It is not surprising that a number of proposed techniques for

Petri net modeling of manufacturing systems exploited resource activity cycles [5].

When a Conserved net can be decomposed into two subnets for each token flow,

they are sharing common paths, that is, they share common sequences of transition,

arc, places. To ensure the conservation property in a net, a common path starts and

ends with transitions because two different types of token can be combined only at

a transition and this combined token can be divided into original tokens only at a

transition.

In a subnet several directed circuits are combined, sharing common paths with

each other. When the same token type is not allowed to be combined, there cannot be

a transition which has more than one input place. That is, each transition in a subnet

has only one input place and one output place (usually called a state machine). When

two directed circuits are combined, therefore, the common path starts and ends with

places.

Liveness of Conserved Petri Net Systems

Dead-lock in a Petri net system occurs when there are transitions which can­

not fire. A transition is live if it is not dead-locked. In the analysis for liveness of

conserved Petri net systems, subnets and subsystems of Conserved nets will be con­

sidered. Hereafter, when we refer to a subnet, it is a closed subnet of a token type

flow decomposed from a Conserved net. In addition, we assume that combined initial

tokens can be decomposed into individual token types which can be assigned to the

corresponding subnets. We will follow the formal definition of liveness referred to in

www.manaraa.com

the literature [12].

Definition 1.8: A transition ^ of a marked Petri net system W — (P , T , A , M) is

said to be live if and only if , for all reachable markings M, there exists a sequence

of transition firings which results in a marking in which t is enabled. A Petri net

system is said to be live if all its transitions are live.

We develop definitions for two types of subnet/subsystems in Conserved Petri net

systems.

Definition 1.9: A subnet/subsystem in which output arcs of places have no deci­

sion specification is called r-net/r-system, and a subnet/subsystem in which output

arcs of places have a decision specification is called d-net/ d-system.

When a place in a r-system has more than one output arc, the marked token in

the place will move to any one of the arcs randomly whenever the connected transi­

tion meets enabling conditions. But, in a d-system, a marked token in a place which

has more than one output arc must move along one of the output arcs according to

the decision specifications attached to the arcs. At below, we develop three proposi­

tions concerning liveness conditions of Conserved Petri net systems:

Proposition 1.10: An r-system, W = {P,T,A,M), is live if and only if the num­

ber of tokens in the system, M{pi), is greater than zero and less than

^ P I E G w h e r e G i s a u n d e r l y i n g n e t o f W .

Proof: It is clear that a r-system (Figure 1.5) is not live if the system does not

contain a token. When a place in a r-system contains tokens, an output transition of

the place can be enabled only if M(p^) of an output place, p^, of the transition is less

www.manaraa.com

24

(a) A r-net

P3.

(b) Circuits of a r-net (a)

Figure 1.5: The structure of a r-net

www.manaraa.com

25

^31)

P4

(a) A d-net

t

PI

(b) Circuits of a d-net (a)

Figure 1.6: The structure of a d-net

www.manaraa.com

26

than the capacity, C'(pg). Note that every transition in the r-net has only one output

place and one input place. If every place, p^-, in the r-system W is marked with

which equals to C'(pj-), there is no transition which can be fired. Otherwise,

there is more than one transition to be fired. Assume that r-system W is live. Since

it is live, there is more than one transition which can be fired. From the transition

enabling conditions, the number of tokens, M(pj), in the output place, p^, of the

enabling transition is less than the capacity, C'(pj).

A r-nei is a state machine with finite capacity. Without considering capacity,

a state machine is live if and only if the net contains at least one token [1]. When

considering capacities of places, the capacitated state machine can be reduced into

a macro place with the capacity of y^p.ç.Q C{pi) from the result of Murata and

Komoda [14]. Therefore, the proposition is a natural consequence of the previous

work on state machine.

Proposition 1.11: A d-system, W = (P,T, A, M), is live if the number of tokens in

the system is greater than zero and less than C'(p^),2 = l,2,...,m},

where Gf^ is the k th directed circuit in G = { P , T , A) , and m is the number of

directed circuits in G.

Proof: It is trivial that the d-system W is not live if the net does not contain tokens.

In a d-net, several circuits are combined sharing common paths (Property 4). If

every place, p^, in any circuit of W is marked with M(p^) which equals to C'(p^),

there is a possibility of a dead-lock. Consider an example d-system in which capacity

of every place is one as depicted in Figure 1.6. If the tokens in P2 and pg try to

www.manaraa.com

fire transitions Ég and respectively, and a token is marked in pj, dead-lock occurs

because there is no room for the token movement. But, if the token in pg can fire

the transition (g, dead-lock can be avoided.. In a d-net the output arcs of a place

are specified with some decision for token movement. Sometimes, a token in a place

must fire a specific transition according to the decision arc specification. So, as in

the above example, the tokens in P2 and pg may have missions to fire the transitions

and respectively. Therefore, there is a possibility of a dead-lock if the number

of tokens in any circuit in G equals to the sum of capacities of places in that circuit.

Consequently, W is live if the number of tokens in a net is greater than zero and less

than the sum of capacities of places in any circuit.

Proposition 1.12: When two subsystems Wi and W2 which are live are combined

sharing a common path which starts and ends with transitions, the combined system

is live if and only if the following conditions are avoided;

(i) non-sharing places of a subsystem are not marked with tokens, and

(ii) all non-sharing places in the other subsystem are marked with tokens of the

same number as the capacity.

Proof: From the reduction rule of a state machine by Murata and Komoda [14], the

combined net can be reduced into three macro place and two transition. Consider

an example net in Figure 1.7. The reduced net consists of two non-sharing places

(Fl and P3), one sharing place (P2), and two transitions and <2)- The capacity

of a macro place is represented as the sum of capacities of places included in the

macro place. As shown in the Figure 1.7-(d), each reduced subsystem forms a simple

circuit. Since two subsystems are live there is more than one token in each circuit.

www.manaraa.com

28

The following conditions for dead-lock hold from the transition enabling rules of a

Petri net.

1. The transition cannot be enabled if and only if

1.1 M(Pi) = 0 or = 0, or

1.2 M(f2) = C(f2).

2. The transition ^2 cannot be enabled if and only if

2.1 M { P 2) = 0 or

2.2 M (P i) = C { P i) or M { P ^) = C (P ^) .

To be live, transition or ^2 should be enabled. Iff^ is fired, then M{P2) > 0,

and M {Pi) and M(P2) are less than C{Pi) and C(fg) respectively. Therefore,

transition (2 can be enabled. If ^2 is fired, then M(̂ 2) < d both M(P]^) and

are greater than zero. Therefore, transition ti can be enabled. Consequently,

if both ti and (2 cannot be fired at the same time, then dead-lock occurs. Both

transitions cannot be fired if and only if the combination of the above two conditions

holds. Only the combination of (1.1) and (2.2) holds under the condition that the

number of tokens in each cycle is greater than zero and less than total capacity

of places in each cycle. Therefore, if and only if either (1) M{Pi) = C{Pi) and

M(Pg) = 0, or (2) M(P^) = C'(Pg) and M{Pi) = 0, dead-lock occurs.

Remark: A Conserved Petri net system is conservative if it is live.

It is easy to see that a Conserved Petri net system has conservativeness.

www.manaraa.com

29

.xO

"S

Q»

, P6

P4
^3

-h

P3

-h . i
^3

, O"

O" "o-^a.
(a) A subnet G\ (b) A subnet G2

O

o
(c) A net combined with G\ and G2

'1

0 0 0
h

(d) Reduction of net (c)

Figure 1.7: The combination of two subnets

www.manaraa.com

30

(a)

MCI

INI OUTl

INTABLE

(e)

^OB^
IN2

iVlC2 iVlC2

0UT2

(b)

OUTTABLE

(c)

Figure 1.8: A machine center with a robot

An Example: A Machine Center with a Robot

The modeling concept of Conserved nets and high-level control rules will be

explained with an example machine center referred in the paper of Gentina and

Corbeel [13]. The machine center is composed of two transfer conveyor benches

designed for loading and unloading (INTABLE and OUTTABLE), two autonomous

machines, MCI and MC2, with two transfer benches each (IN and OUT), and a

robot which distributes parts between the input, output transfer conveyor benches,

and two machines (Figure 1.8). We assumed that two types of parts are introduced

alternately into the machine center as in Table 1.1. Each part has its own routing:

part type 1 is machined MCI first, then MC2, and part type 2 is machined MC2

first, then MCI.

www.manaraa.com

31

Table 1.1: Job routings in a machine center

Part type Routing Process time (min) Part mix
1 d,a,b,c 2,10,15,2 1/2
2 d,b,a,c 2,10,15,2 1/2

* Robot pickup time: 0.5 min.
* Robot delivery time: 0.5 min.

Figure 1.9 shows a Petri net model of the machine center using a Conserved

nets. To make a Conserved net, we assume that the system forms a closed queuing

network such that the number of parts is constant in the system. There are five types

of tokens, i.e., part, robot, MCI, MC2, and LOAD/UNLOAD. In this Conserved net,

we have five subnets for each token type, and all places have capacity of one. From

the liveness conditions of Conserved nets, the following results can be obtained.

• Each subnet of a resource token (i.e., MCI, MC2, or LOAD/UNLOAD), is an r-

net, and includes two places (i.e., the capacity of the subnet is two). Since only

one token can be assigned in each subnet, the subsystems are live (Proposition

1.10).

• The subnet of the robot token is a d-net. The output arcs of places in the

subnet has decision specifications regarding the robot movement. In the subnet,

9 circuits containing two places are identified. Since only one robot token is in

the system, the subnet is live (Proposition 1.11).

• The subnet of the part token is a d-net. Each output arc of a place has attached

to it a decision specification according to job routings. In the subnet, three

circuits exist, and every circuit has capacity of four. If the number of part

tokens is less than four, therefore, the subsystem is live (Proposition 1.11).

www.manaraa.com

32

RA {Ml}

OP DB
{(Ml,J)

{(M2,J)} {R}

RA OP

TA
OB

{M2}
OB

{M3} {R}

Token types RA

R: Robot

J: Part

Ml: Machine 1 Place types
M2: Machine 2

OP: Machine operation M3: Load/unload
RA: Machine idle

IB: Input buffer

OB: Output buffer

TA: Robot idle

MV: Robot moving

Figure 1.9: A Conserved net model of a machine center

www.manaraa.com

33

• In the combined net from subnets of part tokens and a machine token (MSI,

MS2 or LOAD/UNLOAD), dead lock occurs (Proposition 1.12) if

(1) RA place of a machine token has no token, and all places of part tokens

have tokens, or

(2) OP place of a machine token has no token, and part tokens are not in the

system.

• In the combined net of subnets of part tokens and a robot token, dead lock

occurs (Proposition 1.12) if

(1) TA place of a robot token has no token, and all places of part token have

tokens, or (2) MV place of a robot token has no token, and all places of part

tokens have not tokens.

The problem in this system is designing a robot control rule to provide an efficient

part flow. Sometimes, a dead-lock due to bad part movements occurs. To handle this

situation, some error recovery routine may be required. The more desirable method

may be to design a sound control rule to avoid the dead-lock phenomenon. In this

study, the latter approach will be discussed. From the analysis results, the following

strategies for control rules are required to prevent dead-locks in the system.

• The number of part tokens in the system should be more than zero.

• At most one circuit of part tokens have tokens in OB, IB, and OP places in the

circuit.

• When a circuit of part tokens has tokens in OB, IB, and OP places, the MV

place should not have a part token to be routed to the IB place of that circuit.

www.manaraa.com

34

• When a circuit of part tokens has tokens in OB, IB, and OP places, the token

in the OB should be moved to the next destination as soon as possible.

Figure 1.10 shows an extended Petri net model in which robot movement is

described in detail in order to be used for a detail simulation. In addition, the robot

control system based on the above results was designed and incorporated with the

Petri net model for the simulation. By accomplishing a simulation, it is possible to

estimate performance measures such as output rate, flow time, and queue size in the

system. In addition, the animation of a Petri net model provides validation of the

control rule. In modeling the Petri net, the following logic is employed.

• The Petri net model for robot movements consists of CP, LN, PU, DL, and TA.

PU and DL represent the pick-up and delivery process of the robot respectively.

TA represents the idle status of the robot. The time taken to move the robot

is imposed on the LN place. The output arcs of these places are decision arcs.

When a token is in these places, the control system will give a command to the

token to resolve conflicts (i.e., to determine the transition to fire).

• Each machine consists of an input and an output buffer (IB, OB), operation

(OP), and machine resource available (RA). The part token in the IB place

moves to the OP place whenever the machine is available. After finishing pro­

cessing time in the OP place, the part token moves to the OB place, and a

machine token moves to the RA place.

• At each node, the specification of token flow meets the conservation rule (i.e.,

= F *) except at the JC and JD places.

www.manaraa.com

35

INTAB@feLX^ ̂

(9

(9

Initial tokens

RA at machines and tables: Machine token
TA at INTABLE: Robot token
JC: Job token

QHr-OH—<2 ̂
'Cj)A OUTTAB LE

Figure 1.10: A Petri net model for the simulation of a machine center

www.manaraa.com

36

• Job tokens are created at the JC place in the input transfer bench whenever a

job token leaves the JC place in order to guarantee more than one part token in

the system. The job token creation rule regarding the next job type is attached

to the JC place.

• Job tokens are deleted at the JD place in the output transfer bench.

• Every place has a capacity of one.

• Initially, machine tokens are assigned to each RA places, a robot token to TA

place adjacent to INTABLE, and job token to JC place.

To avoid the dead-lock phenomenon discussed before, the robot control rule is

modeled by giving a priority to each movement of the robot token. Note that the

number in a place name means the each table and machine. The number 1, 2, 3, and

4 refer to MCI, MC2, INTABLE, and OUTTABLE respectively. For example, OBI

is a OB place of the MCI. Each rule is listed in a sequence of high priority.

< Robot control rules >

1. If M(OBl) = 1 and M(OPl) = 1, then send a part token in the OBI to the
next destination.

2. If M(0B2) = 1 and M(0P2) = 1, then send a part token in the 0B2 to the
next destination.

3. If M(IBl) = 0 and M(RAl) = 1, then send a part token to IBl.

4. If M(IB2) = 0 and M(RA2) = 1, then send a part token to IB2.

5. Send the longest waiting part token in OB's to the next destination.

www.manaraa.com

37

When the MCI is blocked because of a full output buffer of MCI, the part in the

output buffer has the highest priority. The second rule is applied to MC2. The third

(fourth) rule says that when MCI (MC2) is experiencing the starving of parts, send

the part to MCI (MG2) if possible. This rule will provide the high utilizations of

machines. The final rule select a part with the longest waiting time at output buffers.

The part movement is possible only when the IB of the next route for a selected part

is not full with tokens. The detailed description of control rules, and the method of

assigning a command to a robot token will not be given.

To evaluate and validate the proposed control rule, experimental simulation was

accomplished. Figure 1.11 shows the output of the simulation. The developed robot

control rule is considered to be a desirable rule since the simulation results show that:

1. during the simulation time (1440 min), dead-lock did not occur, and

2. the utilization of MCI and MC2 is 100 %.

In a real system, it will be impossible to achieve 100 % utilization of machines because

of random effects such as machine break down and fluctuation of processing times.

In this simulation experimentation, however, those factors were not considered.

Conclusion and Remarks

In this paper, a subclass of Petri nets, called Conserved nets, has been proposed

to be exploited for modeling, analysis, and simulation of FMSs. The desirable proper­

ties of a Petri net model of FMSs can be easily checked by using developed conditions

for liveness of Conserved nets. While hardware components of FMSs, including the

low level control system, are modeled by Petri nets, the high level control system of

www.manaraa.com

1. Place statistics
Simulated time; 1443.5

No Type Machine No. of
pass

Util. Ave.
wait

Ave.
queue

1 CP 243 0.00 0.00 0.00
2 CP 234 0.00 0.00 0.00
3 CP 332 0.00 0.00 0.00
4 CP 194 0.00 0.00 0.00
5 LN 100 0.04 0.00 0.00
6 LN 191 0.07 0.00 0.00
7 LN 187 0.07 0.00 0.00
8 LN 95 0.03 0.00 0.00
9 TA IN 98 0.00 8.02 0.55
10 PU MSI 95 0.03 0.00 0.00
11 DL MSI 97 0.03 0.00 0.00
12 PU IN 97 0.03 0.00 0.00
13 TA OUT 96 0.00 0.02 0.00
14 DL OUT 93 0.03 0.00 0.00
15 TA MSI 93 0.00 0.58 0.04
16 TA MS2 143 0.00 0.20 0.02
17 DL MS2 97 0.03 0.00 0.00
18 PU MS2 95 0.03 0.00 0.00
19 IB MSI 97 0.00 7.14 0.48
20 OB MSI 95 0.00 1.56 0.10
21 OP MSI 96 1.00 0.00 0.00
22 RA MSI 95 0.00 0.04 0.00
23 IB MS2 97 0.00 11.87 0.80
24 OB MS2 95 0.00 1.24 0.08
25 OP MS2 96 1.00 0.00 0.00
26 RA MS2 95 0.00 0.07 0.01
27 IB OUT 93 0.00 0.00 0.00
28 OP OUT 93 0.13 0.00 0.00
29 RA OUT 93 0.00 13.52 0.87
30 JD OUT 93 0.00 0.00 0.00
31 OB IN 98 0.00 14.66 0.10
32 OP IN 99 0.14 12.58 0.86
33 RA IN 98 0.00 0.00 0.00
34 JC IN 100 0.00 14.44 1.00

Figure 1.11: Simulation output of a machine center

www.manaraa.com

39

1. No. Of job produced

Total time = 1443.50
No of jobs produced - Type 1 = 47
No of jobs produced - Type 2 = 46
Total no of jobs produced = 93

2. Robot token statistics

No. of Moving time Waiting time Moving time Waiting time
robot with part with part without part without part

1 477.50 0.00 96.00 870.00
(33 %) (0 %) (7 %) (60 %)

Figure 1.11 (Continued)

FMSs is modeled separately in order to resolve the conflicts in the Petri net model.

The modeling logic of Conserved nets and a robot control system is demonstrated

with an example machine center. It shows that (Conserved nets well represent the

hardware components of FMSs. Also, useful information for the design of control

systems can be easily obtained from the analysis of a Conserved net model. Finally,

the simulation of a Petri net model provides a useful tool to validate control systems

and the configuration of hardware components in an FMS.

The structure of software for modeling and simulation of Conserved nets was not

described here. Readers who are interested in it can refer to [15].

www.manaraa.com

40

References

[1] E. Best and P. S. Thiagarajan, "Some Classes of Live and Safe Petri Nets," in
Concurrency and Nets: Advances in Petri Nets (Edited by J. Hartmann, K.V.
Genrich, and G. Rozenberg), Springer-Verlag, Berlin; New York, 1987.

[2] F. Commoner and A. W. Holt, "Marked Directed Graphs," J. of Computer and
System Sciences, No. 5, 1971.

[3] M. Hack, "Analysis of Production Schemata by Petri Nets," Technical Report
94, Project MAC, Massachusetts Institute of Technology, Cambridge, Mas­
sachusetts, 1972.

[4] B. H. Krogh and R. S. Sreenivas, "Essentially Decision Free Petri Nets for Real­
time Resources Allocation," Proc. IEEE Int. Conf. on Robotics and Automat.,
IEEE Computer Society Press, Washington, DC, 1987.

[5] C. L. Beck and B. H. Krogh, "Models for Simulation and Discrete Control of
Manufacturing Systems," Proc. IEEE Int. Conf. Robotics and Automat., IEEE
Computer Society Press, Washington, DC, 1986.

[6] Meng Chu Zhou and Frank Dicesare, "A Petri Net Design Method for Auto­
mated Manufacturing Systems with Shared Resources," Proc. IEEE Int. Conf.
on Robotics and Automat., IEEE Computer Society Press, Washington, DC,
1990.

[7] R. Valette, "Nets in Production Systems," Lecture Notes on Computer Science,
255, Springer-Verlag, Berlin; New York, 1986.

[8] Antonio Camurri and MacerceUo Frixione, "Structured Representation of FMS
Integrating SI-NETS and High Level Petri-Nets," Applied Artificial Intelligence,
Vol. 4, 1990.

[9] Javier Martinez, Pedro Muro, and Manuel Silva, "Modeling, Validation and
Software Implementations of Production Systems Using High level Petri nets,"
Proc. IEEE Int. Conf. on Robotics and Automat., IEEE Computer Society Press,
Washington, DC, 1987.

[10] J. C. Gentina and D. Corbeel, "Colored Adaptive Structured Petri Nets: A Tool
for the Automatic Synthesis of Hierarchical Control of FMSs," Proc. IEEE Int.
Conf Robotics and Automat., IEEE Computer Society Press, Washington, DC,
1987.

www.manaraa.com

41

[11] Y. Narahari and N. Vishwanahham, "A Petri net Approach to the Modeling and
Analysis of Flexible Manufacturing Systems," rlnna/s of Operations Research,
Vol. 3, 1985.

[12] J. L. Peterson, Petri net Theory and the Modeling of Systems^ Prentice-Hall,
Englewood Cliffs, NJ, 1981.

[13] 0. K. Hutchinson and A. T. Clementson, "Manufacturing Control Systems: An
Approach to Reducing Software Costs," Robotics and Computer integrated Man­
ufacturing, Vol. 1, No. 3/4, 1984.

[14] Tomohiro Murata and Norihisa Komoda, "Liveness of Sequence Control Speci­
fications described in Capacity Designated Petri Net using Reduction," Proc.
IEEE Int. Conf. on Robotics and Automat., IEEE Computer Society Press,
Washington, DC, 1987.

[15] D. S. Yim and T. A. Barta, "Petri net-based Simulation Tool for the Design and
Analysis of FMSs," Working Paper, Department of Industrial and Manufacturing
Systems Engineering, Iowa State University, Ames, Iowa, 1991.

www.manaraa.com

42

PART II.

PETRI NET-BASED SIMULATION TOOL FOR THE DESIGN AND

ANALYSIS OF FMSS

www.manaraa.com

43

Petri Net-Based Simulation Tool for the Design and

Analysis of FMSs

D. S. Yim and T. A. Bart a

Department of Industrial and Manufacturing Systems Engineering

Iowa State University, Ames, Iowa 50010, USA

Abstract

Simulation has been recognized as an invaluable tool in designing and analyz­

ing FMSs. In this paper, a Petri net-based simulation tool is presented to aid the

simulation projects in the manufacturing area. We developed Petri net modeling

methodology in order to exploit Petri nets for the simulation of FMSs. While hard­

ware components of FMSs are modeled by hierarchically-classified Petri net objects,

real-time control rules in high-level control systems are separately modeled and in­

tegrated with a Petri net model so that they resolve conflicts occurring in Petri net

execution. The facilities of the developed tool are described. Also, the use of the tool

is illustrated via a case study.

Keywords; Petri nets, Simulation, FMSs.

www.manaraa.com

Petri nets are a formal, graphical modeling tool well suited to the description of

distributed and concurrent systems which exhibit synchronization and cooperation.

Because of these capabilities, the Petri nets are a widely used tool for the model­

ing and analysis of communication systems, computer software and hardware, and

manufacturing systems. In addition, Petri nets have been used for the simulation of

discrete manufacturing systems. Torn [1] proposed extended Petri nets for the ap­

plication of discrete-event simulation. He introduced the basic requirements of Petri

nets for the purpose of simulation; inhibitor arcs, timed nets, colored tokens, queues,

test arcs and interrupt arcs. For an application to the simulation of manufacturing

systems, Bruno and Morisio [2] proposed extended Petri nets, Prot net. They devel­

oped the simulation tool based on object-oriented programming. Alanche, et al. [3]

described the structure of a Petri net-based simulator, called PSI. The PSI consists

of a token player, calendar, and statistical functions.

Even if several extensions and tools are developed in order for Petri nets to be

exploited in the simulation of manufacturing systems, there exist limitations in repre­

senting complex FMSs with Petri nets. Petri nets can be useful in the representation

of some features of FMSs, such as the distributed and concurrent nature of processes

or the synchronization and conflicting properties among tasks in the use of shared

resources [4]. However, it is rather difficult to model high-level control systems in

FMSs (e.g., scheduling rules, vehicle dispatching rules) with Petri nets. To reduce

this difficulty, several methodologies have been proposed. Martinez, et al. [5] inte­

grated high-level Petri nets with a knowledge-based system; coordinate subsystems

with the local controllers are modeled using high-level Petri nets, and scheduling

www.manaraa.com

45

rules are represented as a knowledge-based system. Similarly, Camurri and Frixione

[4] proposed Structured timed colored Petri nets to represent low-level coordinate

subsystems, and used Sl-nets which are based on the frame-based semantic net for

the modeling of the high-level scheduling system.

As briefly discussed, it is necessary to increase the modeling power of Petri nets

to model and simulate complicated FMSs. Also, the high-level control systems should

be added to Petri net models. This paper presents an approach to exploit Petri nets

for successful simulation projects. The main objectives are:

• To develop Petri net objects and the modeling methodology which is suitable

for the modeling of hardware components of FMSs, including the low-level

controller.

• To develop modeling methodology for high-level control systems in FMSs which

are easily incorporated into Petri net models.

• To implement these concepts and methodologies into a computer-aided simu­

lation tool for modeling, animation, and analysis of FMS specifications.

To facilitate simulation modeling, the place and token objects in Petri nets are

classified to correspond to hardware components of FMSs. A Petri net model is

constructed with these Petri net objects in a top-down fashion. To ensure well-

formed Petri nets. Conserved nets [6] in which token flows are specified to guarantee

a conservativeness property are presented. Liveness conditions of Conserved nets

can be exploited to aid the modeling of a live Petri net model. In addition to Petri

net models, high-level control systems are separately modeled, and integrated with

the Petri net model to resolve conflicts occurring in the simulation. These ideas are

www.manaraa.com

46

^2^ Place

^ Token

Transition

»- Arc

O Inhibited arc

Abstracted place

Figure 2.1: Elements of Petri nets

implemented in a computer-aided simulation tool. A simulation procedure with the

developed tool is demonstrated with an example FMS.

Petri Nets for Simulation of FMSs

Specification of Petri nets

A top-down modeling procedure that ensures desirable properties in a Petri net

model is proposed. Besides the basic elements of Petri nets (i.e., places, transitions,

directed arcs, and tokens), inhibitor arcs and abstracted places are included to facili­

tate the modeling of complicated systems (Figure 2.1). The inhibitor arc connecting

between a place and a transition prevents the transition from firing when the con­

nected place has tokens. The top-down modeling methodology allows abstraction of

the detailed levels into a concise representation. In this Petri net model, a rectangle

represents an abstracted place.

The Petri net used here for the simulation of FMSs allows several attributes in

www.manaraa.com

47

Petri net elements.

• Each place is a capacitated, timed place.

• Each token is identified as an individual object, and belongs to a certain class.

• Each input arc of a place has attached to it a set of token types to flow.

• Each output arc of a place can have attached to it an expression for the decision

on token movement.

To model a system with this Petri net, four types of specifications are necessary;

specification of places, input arcs and output arcs of places, and tokens. A place

represented by a circle has two attributes, time and capacity. A place has its own

capacity to allow the maximum number of tokens. When a token arrives in a place

that needs a time delay, the token becomes in processing state immediately. After

the imposed time delay, the state of the token changes to a waiting state. Three

types of processing times are imposed depending on the situation. A place-attached

processing time, mean time between failure (MTBF), and a token-attached processing

time are classified considering the characteristics of F MS simulation.

The tokens represented by dots are flow objects and resources in an FMS. Each

token is belong to a certain class (token type) represented by a color such as parts,

pallets, machines, and AGVs. Some types of tokens are controlled by a high-level

control system. Each token type can assume several attributes. For example, part

tokens have attributes, routing and processing times. Also, resource tokens such as

machines, robots, AGVs contain a status attribute (break-down or not).

Directed arcs represented by arrowed arcs are classified into input arcs of a place

and output arcs of a place. An input arc of a place is specified to allow the flow of

www.manaraa.com

48

Place

Load/
unload

Storage Machine
center

Transportation Work station

OP RP RA IB OB JC JD ST PS JS LN CP PU DL TA

Figure 2.2: Classification of place objects

a specific set of tokens. An output arc of a place can be specified to define decision

choice for a transition firing. If decision specifications are not attached to output arcs

of a place, a transition is selected randomly among a set of enabled output transitions

of the place. In addition to directed arcs, inhibited arcs are represented by a small

circle instead of an arrow.

Petri net objects for modeling of FMSs

The places and tokens for the modeling of FMSs were classified and specified

hierarchically to facilitate the modeling process of hardware components. The classi­

fied places—work station places and transportation places—correspond to hardware

components of FMSs (see Figure 2.2 and Table 2.1).

In addition to place objects, token objects are classified into active tokens and

passive tokens as shown in Figure 2.3. The active tokens such as AGVs, machines,

personnel resources, and robots can move to the next node autonomously, or are

controlled by a high-level control system. The passive tokens such as parts, pallets,

www.manaraa.com

49

Table 2.1: Place objects for Petri net modeling of FMSs

Objects Mnemonic
name

Token types^
through input arcs

Attributes^

Operation OP (A,J,P) MTBF, Process time
Decision arc

Repair RP (A,J,P) Repair time
Input buffer IB J or (J,P) Capacity

Token link method
Output buffer OB J or (J,P) Capacity

Token link method
Resource
available

RA A

Job creation JC No token Token creation rule
Job deletion JD J
Control point CP C or (C,J,P) Decision arc
Line LN C or (C,J,P) Process time
Transporter
available

TA C Decision arc

Pick-up PU (C,J,P) Pick-up time
Delivery DL (C,J,P) Delivery time
Storage ST (J,P) Capacity

Token link method
Job storage JS J Capacity

Token link method
Pallet storage PS P Capacity
a . Token types.

A: Autonomous tokens.
C: Controlled tokens.
J: Job tokens.
P: Passive tokens except job tokens.

(A combined token is represented as a turple of each token type.)
b . The capacity of every place is one except IB, OB, ST, JS and PS.

www.manaraa.com

50

Token

Passive Active

Controlled Autonomous

Machine Man Robot Vehicle Job Pallet Tool

Figure 2.3: Classification of token objects

and fixtures cannot move to other nodes without the combination with active tokens.

The classified places shown in Table 2.1 have the following characteristics:

• All places have a capacity of one to allow the maximum number of tokens except

IB, OB, ST, JS, and PS places. The capacities of those places can be specified

by users.

• OP, RP, LN, PU, and DL places are timed places. The OP place takes three

types of time values: a place-attached, MTBF, and a token-attached time. RP,

LN, PU, and DL places takes only a place-attached time value.

• The token flows at each place are conserved except the JC and JD places. While

job tokens are created in a JC place, these tokens are deleted in a JD place.

• Input arcs of a place type have specific token types to flow.

— JC, JD, IB, ST, OB, JS, and PS, places allow only passive tokens.

- OP, RP, LD, UD, PU, and DL places allow the combination of passive

tokens and active tokens.

www.manaraa.com

51

- RA and TA places allow only active tokens.

- LN and CP places allow either active tokens or the combination of active

tokens and passive tokens.

• The output arcs of transportation places, CP, PU, DL, and TA, have attached

to them a decision specification of token movements. The next place to move

for a token in the place is specified at output arcs of the place. In OP place,

there are two types of decision arcs; an arc for a success status and an arc for a

breakdown status. When the processing time (place-attached or token-attached

time) of a marked place is less than remaining MTBF of the place, the status

of the place is success. Otherwise, the status becomes breakdown.

Some places must be specified with token-related rules. JC places need token

creation rules. A job arrival pattern at an FMS is usually classified as a static demand

or a dynamic demand. The static demand is the case where there is a fixed number

of jobs, all having the same arrival time, in an FMS. Under the dynamic demand

environment, the jobs are continuously arriving according to some arrival pattern.

For the static demand, job types and the number of jobs in each job type can be

specified. Several job token creation rules are provided in this simulation tool. They

deal with which type of job token is created next; (1) SAME: same type of job token

which was created previously, (2) LRJT: The largest remaining job type, and (3)

SPT: Shortest processing time. Also, for the dynamic demand, each job type and

the corresponding distribution of inter-arrival times of jobs can be specified at a JC

place.

IB, OB, JS, and ST places need token-link rules. When a token arrives at these

www.manaraa.com

52

places, the token is linked in a token list of that place according to the specified

rule. This rule corresponds to a machine-to-part allocation rule in FMSs. In this

modeling tool, several rules to link a job token into a token list are supplied; (1)

PRIO: predefined priority, (2) SPT: shortest processing time, (3) MRN: minimum

remaining number of processes, and (4) FIFO: first-in first-out.

Well-formed Petri net model

The token movement in a Petri net system will be well performed without imped­

iments only when the Petri net model is well-formed. In order for a Petri net model

to be well-formed, it must have several properties: safeness, boundedness, conserva-

tiveness, and liveness. The validation of a Petri net model (i.e., simulation model)

and the analysis of the modeled system are possible by examining the properties. A

Petri net model of FMSs is required to have the following important properties as

discussed in [7].

Safeness and boundedness If places of Petri nets have physical meanings

(e.g., buffer, storage, location of vehicles), safeness and boundedness ensure that

a modeled system has an absence of overflows. The number of tokens in a place

should not exceed the specified capacity. Since our Petri net for the modeling and

simulation of FMSs limits the number of tokens in a place (i.e., capacitated place),

however, these properties are unnecessary to examine.

Conservativeness If a marked Petri net model is conservative, then the num­

ber of tokens of each token type is constant in all reachable markings. A token in our

Petri net modeling methodology represents a resource or a job in a system. Therefore,

www.manaraa.com

53

conservativeness must be met by the following facts.

1 The number of resources is constant over time.

2 In a closed queuing system, the number of jobs is constant.

3 In an open queuing system, a job token which enters the system is conserved

until it leaves the system.

In an open queuing system, conservativeness of job tokens is not required. But,

once the job token is created, it should not be transformed until it is deleted at

appropriate places. The classified place objects provide token creation and deletion

places to handle this situation. Therefore, besides the token creation and deletion

places, the token flows at every node (i.e., a place or a transition) should be conserved.

Sometimes, in a real system, a part is decomposed into several parts by a certain

operation (e.g., metal cutting operation). In this case, the original part can be

considered to consist of several decomposable parts. By letting an initial job token

be several decomposable token types, the conservativeness of each token type will be

maintained.

Liveness Liveness implies the absence of dead-locks in a modeled system.

Dead-locks can easily occur in operating a real system. For example, in operat­

ing an AGV system, collisions among AGVs and blocking problems are common.

Therefore, it is necessary to detect dead-lock of a system in the modeling process.

www.manaraa.com

54

Modeling rules for a well-formed Petri net

After modeling a system with Petri nets, the desirable properties of the system

can be revealed by analyzing the Petri net model. However, the complexity of the

model is drastically increased with the number of states and events in a net and the

introduction of inhibited arcs. The desirable methodology is, therefore, to impose

restrictions on the Petri net modeling process to ensure the required properties a

priori. That is the reason that several subclasses of Petri-nets (e.g.. State machine

[8], Marked graph [9], Free-choice nets [10]) and several modeling methods (e.g.,

resource activity cycle [11], bottom-up modeling by adding arcs step by step [12])

have been proposed. Conserved nets [6] were also proposed to model FMSs by the

authors. Conserved nets are a subclass of Petri nets which provide simple analysis of

the desired properties. The requirements of modeling a well-formed Petri net model

using Conserved net are as follows.

1. At every transition, the token flow should meet the conservation rule (i.e., input

token flow = output token flow).

2. Each subnet of active token types and passive token types except job token

type should meet liveness conditions 1 and 2 in Appendix.

3. When several subnets are combined sharing common paths, any pair of subnets

should meet liveness condition 3 in Appendix.

4. Passive tokens should be combined with active tokens to move to other nodes.

Therefore, a subnet of passive tokens should be combined with subnets of active

tokens by sharing common paths.

www.manaraa.com

55

5. A token creation place should have an appropriate token creation function. To

be live, there should not be a shortage of job tokens. Also, when a token arrives

at a token deletion place, the token should be deleted immediately to prevent

overflows of job tokens in a net.

6. When inhibited arcs are introduced into a net, the analysis of properties be­

comes difficult. These arcs may cause unpredictable dead-locks in the system.

It is recommended that inhibited arcs not be used if possible.

Since passive tokens cannot move to the next place without combination with

active tokens, a direct concern is liveness in subnets of active tokens which are com­

bined with subnets of passive tokens. When subnets of active tokens are live, the

combined Petri net is live if there will not be a shortage and overflow of passive

tokens. When passive tokens are resources such as pallets, fixtures, and tools, the

number of these tokens should be constant in a net. But, when passive tokens are

job tokens, the subnets of these tokens may not be closed nets in that job tokens are

created and deleted in the nets. When this open net is combined with subnets of

active tokens, the combined net is live if the number of job tokens in the net is less

than the total capacity of places for job tokens, and more than or equal to one at

any time.

Control Systems in FMSs

A simulation model for the design and analysis of FMSs contains features for

hardware components and control systems. The hardware component model de­

scribes the physical elements of FMSs such as work stations, material handling equip-

www.manaraa.com

56

ment s, and storage units. The modeling of these elements is rather easily performed

because they are decomposed into manageable elements and modeled with a formal

description. On the other hand, the fact that the control logic has an abstract and

informal nature makes the modeling of control systems difficult. As the manufac­

turing environment proceeds toward automated manufacturing systems, the control

systems become more sophisticated, needing high accuracy and reliability.

The main purpose of the simulation is to analyze and design an FMS by ex­

amining performance measures such as production rate, resource utilization, work in

process, and flow time. These measures are greatly affected by three-tier decision

rules classified by Suri and Whitney [13]. The two upper decision systems are off-line

decision rules in that they do not directly control the FMS hardware components. For

a simulation model, sets of alternatives regarding the off-line decisions are provided

with input data such as part-mix, system configuration, batch size, and balancing.

The third level decision systems are real-time control rules; they analyze the real-time

data and directly control the hardware components. Under the third level decision

systems, we should decide

• Real-time scheduling of jobs

• Job routing and control of material handling systems.

Our modeling methodology provides a Petri net for the modeling of hardware

components. In a Petri net model, several types of conflicts can occur so that a

decision about transition firing is required. Usually, two types of conflicts exist in a

Petri net model [5]: color conflict and path conflict. The color conflict occurs when

there are several tokens in an input place of a transition as shown in Figure 2.4.

www.manaraa.com

57

t l

\&/

t2

Color conflict Path conflict

Figure 2.4: Conflicts in Petri nets

By firing the transition, a token to be involved in the token movement must be

selected among the set of tokens in the place. The path conflict occurs when there

are several output transitions of a place. When a place has a token, a transition to

fire should be selected among a set of output transitions. To resolve these confiicts,

some decision is required, and this decision is related to real-time control rules. At

below, the modeling methodology of two real-time control rules—job release rule and

AGV dispatching rule—is described.

Job release rule

When it is necessary to resolve a color conflict, and a dynamic token selection

rule based on the current status of a system is required, the rule will be attached to

the corresponding transition. Job release rules are considered to be included in the

token selection rule to resolve a color conflict.

Job release rules control the introducing of parts into a system. They determine

the timing and sequence of releasing each part into the system. In an FMS, the job

release rule is closely related to the available pallets at the load area. Usually, a

pallet is restricted to serve certain types of jobs. Therefore, a job cannot be released

www.manaraa.com

58

when there is no available pallet with a like type. This relationship between pallets

and jobs necessitates the classification of job release rules into job selection rules and

pallet selection rules. The following rules were included in the simulation tool.

1. Job selection rules

• SPJL: Load the part which has the smallest proportion of jobs launched.

• SPT: Load the part which has the shortest total processing time.

• FIFO: Load the part with first-come first-serve basis.

• NEP: As each pallet is unloaded, reload it with a like job type if possible.

2. Pallet selection rules

• LUP: Select the least utilized pallet.

• LWP: Select the pallet which has the longest waiting time.

In operating a real system, a job release rule may combine the above two selection

rules. In this case, the rule of higher priority should be specified. For example, under

the job oriented rule, a job is selected first, then a pallet which can serve the selected

job is selected. Under the pallet oriented rule, a pallet is selected first followed by

the selection of a job which can be loaded with the selected pallet.

Control of material handling systems

When material handling equipments are represented as tokens in a Petri net,

these tokens are controllable tokens, and must be given the complete paths to move

in the net. To accomplish the movement of controllable tokens, a high-level control

www.manaraa.com

59

system should have the capability to analyze the current status of the Petri net and

historical data, and to assign a path to the controllable token. The path for the

token is given so that the path conflict is resolved. At below, we will concentrate on

the control of Automated Guided Vehicle (AGV) systems since this system is widely

used recently.

In operating an AGV system, three types of selections are required: an idle

vehicle, a part to move, and the next process of the selected part. Egbelu and

Tanchoco [14] classified the AGV dispatching rules into work center initiated rule

and vehicle initiated rule. In the work center initiated rule, a work center which has

a part to move to the next operation selects a vehicle among a set of idle vehicles.

In the vehicle initiated rule, an idle vehicle selects a work station to serve among the

work stations which have parts waiting at output buffers for the next operation.

In the FMS environment, the vehicle initiated rule involves the selection of the

part to move and the next process for the selected part among the set of parts and

processes simultaneously requesting the service of any vehicle. Under the push rule,

an idle vehicle first selects the part among the set of parts waiting for an AGV in

output buffers of work stations. Then, it selects the next process for the selected

part among the set of alternative processes. But, under the pull rule, the selection

sequence is reversed. An idle vehicle first selects a process which is highly demanding

a replenishment of parts. Then it selects the part which can move to the selected

process among the set of available parts in output buffers.

The following rules were included in the developed AGV dispatching system.

Some of these rules were adopted from the literature [14,15,16].

1. Vehicle selection rule

www.manaraa.com

60

• LIV: Select a vehicle with the longest idle time.

• NV: Select the nearest vehicle.

2. Part selection rule

• LWT: Select a part with the longest waiting time.

• MQS: Select a part in output buffer which has the maximum queue size.

3. Process selection rule

• LIT: Select a work station which is experiencing the longest inter-arrival

time of parts.

• MRIQ: Select a work station whose input buffer has the maximum remain­

ing queue space.

• MWQ: Select a work station whose input buffer has the minimum queue

size in terms of processing time.

Facilities of Petri Net-Based Simulation Tool

The developed simulation tool consists of several subsystems including modeling,

executive, and output analysis (Figure 2.5). Figure 2.6 depicts modeling procedure

emphasized on user interface. A Petri net graphics editor provides a graphic language

for the modeling and simulation instead of a complicated textual programming lan­

guage. Once the Petri net model is completed, the system automatically transforms

the model to the internal representation. The high-level, real-time control rules are

modeled, and transformed to a C program by control rule transformer which is based

www.manaraa.com

61

Output Modeling Executive

Petri net-based simulation tool

Terminating
analysis

Steady-state
analysis

Result
presentation

Petri net
graphics
editor

Control
rule
transformer

Petri net
transformer

Token
player

Animation

Figure 2.5: The structure of Petri net-based simulation tool

on automatic code generation in order to be compiled and linked with the token

player and the animation system.

In addition to the modeling processes, this tool automatically performs output

analysis according to user requirements.

Petri net graphics editor

The graphics editor is used to create and modify the Petri net model. Modelers

can draw and edit a model by selecting elements of Petri nets and placing them in

the desired location. Six elements are provided; abstracted places, places, transitions,

directed arcs, inhibited arcs, and tokens. The abstracted place represents an abstrac-

www.manaraa.com

62

Petri net

model

Petri net

files

Petri net

graphics

editor

Petri net

graphics

editor

Petri net

graphics

editor f Petri net f
objects y

f Petri net f
objects y

Petri net

transformer

editor

Control rule

model

Control rule

transformer

C program

,for control rules

Compiler

Token Compiled file

Animation

system

Petri net

Executive

Figure 2.6: Modeling procedure

www.manaraa.com

63

tion of a Petri net model. The abstracted place will be further completed when going

down levels, thus, a top-down modeling approach is accomplished. As a result, a

Petri net model consists of several submodels which are hierarchically constructed.

Under the Petri net graphics editor, places, token flows, and initial tokens will be

specified. In creating.a place, place attributes such as place type, capacity, and token

link rule can be specified. Also, in creating an arc, the possible token types through

the arc are specified.

After creating a Petri net model, the Petri net transformer automatically trans­

forms the model into the internal representation that will be fetched by a token player

during simulation execution.

Control rule modeling

To model the high-level control system, a token control language was developed.

It consists of predicates, functions, and control statements (Table 2.2). Originally,

the language was devised to model AGV dispatching rules. Besides, it is possible

to model the control rules for other controllable tokens such as robots. The control

rule is modeled in order to give a command to controlled tokens. After the control

rule is modeled, the control rule transformer generates a C program to be compiled

and linked with the token player and Petri net animation system. In addition, the

transition-attached rules such as job release rules can be specified under Petri net

graphics editor.

www.manaraa.com

64

Elements

Table 2.2: Elements of token control language

Usage
Predicate FULL(P): If M { P) = C { P) , then true.

EMPTY(P): If M { P) = 0, then true.
PROCESS(P): If Mp{P) > 0, then true.
WAIT(P): If Mw{P) > 0, then true.

where P : place number
M { P) : no. of tokens in P
C (P) : capacity of P
M p (P) : no. of processing tokens in P
M w (P) ' no. of waiting tokens in P

Function PUSH((Pii,PI2'" • • '-Pln)'^'l'(^21'-f'21'
PULL((Pi 1, Pi2, • • •, i'ln)' ̂ '2 ' (^21 ' •f'22 ' '
SELECT-TK((ifci ,(&2, -, t^m), tg)

where P^~: place number

•'^2m)'^"2)
' ̂ 2m)')

t j -
t k j : the j th token name

ki'. part selection rule {LWT,MROQ}
A:2: process selection rule {LIT,WIQ,MRIQ}
k^: token selection rule {LIV, NV}

Conditional IF (predicate 1) 0 P i (predicate 2) O P 2
statement THEN function 1

ELSE function 2

where O P j : logical operator {AND, OR}

www.manaraa.com

65

Token player and animation

A token player executes a Petri net model and interfaces with a high-level control

system. During the simulation, the token player executes the movement of tokens in

a model, and calls the control system in case control of token movement is needed.

Simulation execution can be viewed by an interactive animation system. The interac­

tive animation system interfaces with the token player to display the animated Petri

net model.

Model validation can be performed by two procedures: a syntax-oriented Petri

net graphics editor and an interactive animation of the Petri net. The Petri net

graphics editor interactively checks the failure of token flows, conflict by inhibited

arcs, and dead-locks in a circuit during the Petri net model creation. As another

way of model validation, the user can execute a Petri net model and can see the

flow of tokens from an animated Petri net. During the simulation, users can select a

transition to fire among the several alternative transitions. It helps to detect wrong

models easily.

Output analysis and results presentation

From the output of a simulation execution, the output analyzer estimates the

performance measures according to the characteristic of simulation-finite horizon or

steady state. Several forms of simulation results are presented. The user can select the

desired forms (e.g., table or graphic form) and performance measures to be displayed.

With gathered place and token statistics, useful measures such as throughput rate,

flow time, work in process, and make span can be obtained.

www.manaraa.com

66

An Example

In this section, a simulation of an FMS using the Petri net-based simulation tool

will be demonstrated. An example FMS used for the demonstration was adopted from

the literature [17]. In this FMS, two types of jobs are produced, and the quantities

of each job type are similar. As shown in Figure 2.7, there is a machine cell and a

broaching machine for each job type. Gauge and wash stations are shared by both

types of jobs. Raw material is manually loaded into trays at load/unload stations,

each for one type of jobs. The tray is moved between work stations by a vehicle

moving along a linear track. The sequence of process for each job type is included in

Figure 2.7. There are buffer positions at each machine, from which the material is

lifted out of the tray and placed into the machine's fixture by a robot. This system is

run for three shifts each day to meet demand. There are two men in the load/unload

area during the first shift, one man during the second shift, and no men during the

third shift. To run the system during the third shift, the raw material should be

stored in the storage, and at the same time, the finished part should be fetched from

the storage to unload during the first and second shift.

The Petri net model was developed under the Petri net graphics editor (Fig­

ure 2.8, 9, and 10). In Figure 2.8, transportation including movement of a vehicle is

the focus while work stations are abstracted for further modeling. Figures 2.9 and

2.10 show Petri net models of a machine, and load/unload stations. The load/unload

station contains JC place with a job creation rule, SAME, to create jobs of the same

type. Note that a Petri net model for load/unload stations includes the timed places,

SHI, SH2, and SH3, representing each shift. They were modeled so that the person­

nel resource is changed according to the shift. In addition, a job release rule, FIFO

www.manaraa.com

67

MCI

(Boring and Drilling)
MC2

(Boring and Drilling)

O O
•• V ehicle • • ••••

•• •• •• zin •• •• ••••

Gauge

1 8 Storage

(Capacity=8)

Broach 1

Job type

Broach 2

Routing

L/U 1 L/U 2 Wash

Processing time (min)

1

2

1.3.7.5.8.1

2.4.7.6.8.2

20,100,20,60,20,20

20,100,20,60,20,20

Figure 2.7: An example FMS

www.manaraa.com

TA, TA] TA DÛ PU] DL PU

,CP CP

LN LNl LN LN LN

.CP .CP CP) .CP CP] CP

DL DL) (PU PU) DL) (pu. DL) (PUJ DL) (PU
TA TA] TA] TA TA

L / U

Figure 2.8: A Petri net model of an FMS at transportation level

www.manaraa.com

69

i: Work cell number

(3 - 8 in Figure 7)

Figure 2.9: Petri net model of a machine center

(as the part selection rule) and LWP (as the pallet selection rule), is attached to the

output transition of JC and PS. In addition, the initial tokens in the Petri net model

were described in Table 2.3.

The vehicle dispatching rule is modeled using a control rule specification lan­

guage. Two different rules are modeled to be applied at each shift. During shift 3,

the finished part should not be moved to the load/unload area because there are no

men in the area. Instead, the finished parts are moved to storage. During shift 1 and

2, the finished parts in storage are moved to the load/unload area, and raw material

is stored in storage to be processed in shift 3. The following control rule was modeled

to handle these considerations.

1. IF (FULL(SHl) OR FULL(SH2)) THEN

(a) PUSH((OBl,OB2,OB3,OB4,OB5,OB6,OB7,OB8),LWT,(IBl,IB2,
IB3,IB4,IB5,IB6,IB7,IB8),LIT)

(b) PUSH((0B1,0B2), LWT, (ST))

(c) PUSH((ST), LWT, (IB1,IB2), LIT)

www.manaraa.com

70

IB'l

0P21 0P)2 (op OP22 (OP

JD JQ

Figure 2.10: A Petri net model of load/unload stations

www.manaraa.com

71

Table 2.3: Initial tokens

Type Name Places Remark

Controllable AGV TA at WASH
Autonomous MCI RA3

MC2 RA4
BRI RA5
BR2 RA6
GAUGE RA7
WASH RA8
MANl RAl
MAN2 RA2
MAN3 RAO
SHIFT SHI Shift token

Passive JOB JCl Type 1
JC2 Type 2

(JOB,PALLET)" IB1,0B1,IB3, Job
OB3,OP3,IB5, type 1
0P5,0B5,IB7,

OB7,OB8,ST(4)^ 4 tokens in ST
IB2,OB2,IB4, Job
OP4,OB4,IB6, type 2
0P6,0B6,0P7,

IB8,OP8,ST(4)^ 4 tokens in ST
a: Combined token of JOB and PALLET.
b: ST place contains 8 tokens.

www.manaraa.com

72

2. IF FULL(SH3) THEN

(a) PUSH((ST),LWT,(IB3,IB4),LIT)

(b) PUSH((OB3,OB4,OB5,OB6,OB7,OB8),LWT,(IB3,IB4,IB5,
IB6,IB7,IB8,ST),LIT)

The control rule model was translated to a C program to be compiled and linked

with the token player and animation system.

Figure 2.11 shows the simulation output regarding place and token statistics.

Discussion and Future Study

In this paper, the Petri net-based simulation tool was presented. It was pro­

grammed with the C language under MS-DOS with a micro computer and EGA

graphic facility.

The developed simulation software has some weaknesses which need further

study. Especially, in modeling FMSs, the following aspects are required to be ex­

tended.

• Extended place objects.

• Models of high-level, real-time control systems

To give extensive modeling power to the tool, diverse place objects are required.

We are considering a tool to make new place objects. According to the application,

a modeler may define the required place objects under the place object definition

system. Then, users could make a model using the predefined place objects.

The proposed token control language has limitations to represent more complex

rules. By allowing the users to make a program for control rules with the C language.

www.manaraa.com

73

1. Controlled Token Statistics

Token Token Moving Waiting Moving Waiting
type Name with part with part empty empty

AGV AGVl 335.0 0.0 420.0 445.0
(28%) (0%) (35%) (37%)

2. Job Token Statistics

TOTAL TIME = 1200.0
NO OF JOBS COMPLETED - TYPE 1 = 11
NO OF JOBS COMPLETED - TYPE 2 = 10

3. Place Statistics

Place Place Cell No. Of Process Wait Queue Capacity
No Type No. Pass Time Time Size

1 OP 7 21 315.0 41.4 0.7 1
2 RA 7 21 0.0 0.0 0.0 1
3 IB 7 22 0.0 60.5 1.1 2
4 OB 7 21 0.0 51.6 0.9 1
5 OP 5 11 660.0 43.6 0.4 1
6 RA 5 11 0.0 0.0 0.0 1
7 IB 5 11 0.0 97.3 0.9 1
8 OB 5 11 0.0 98.5 0.9 1
9 OP 3 11 1100.0 0.0 0.0 1
10 RA 3 11 0.0 0.0 0.0 1
11 IB 3 10 0.0 101.0 0.8 1
12 OB 3 11 0.0 30.5 0.3 1
13 OP 6 11 660.0 43.6 0.4 1
14 RA 6 11 0.0 0.0 0.0 1
15 IB 6 10 . 0.0 50.6 0.4 1
16 OB 6 11 0.0 105.4 0.9 1

Figure 2.11: Simulation output for place and token statistics

www.manaraa.com

74

or by providing interfaces with other systems (e.g., expert systems), the complex

control rules may be modeled. In this case, there is a difficulty that users must know

in detail about the mechanism of the token player.

www.manaraa.com

75

References

[1] Aimo A. Torn, "Simulation Nets, A Simulation Modeling and Validation Tool,"
Simulation, Vol. 45, No. 2, 1985.

[2] Giorgio Bruno and Maurizio Morisio, "Petri Net based Simulation of Manufac­
turing Cells," Proc. IEEE Int. Conf. on Robotics and Automat., IEEE Computer
Society Press, Washington, DC, 1987.

[3] P. Alanche, K. Benzakour, F. Dolle, P. Gillet, P. Rodrigues, and R. Valette, "PSI:
A Petri Net Based Simulator for Flexible Manufacturing Systems," Lecture Notes
on Computer Science, 188, Springer-Verlag, Berlin; New York, 1984.

[4] Antonio Camurri and Macercello Frixione, "Structured Representation of FMS
Integrating SI-NETS and High Level Petri Nets," Applied Artificial Intelligence,
Vol. 4, 1990.

[5] Javier Martinez, Pedro Muro, and Manuel Silva, "Modeling, Validation and
Software Implementations of Production Systems Using High level Petri nets,"
Proc. IEEE Int. Conf. on Robotics and Automat., IEEE Computer Society Press,
Washington, DC, 1987.

[6] D. S. Yim and T. A. Barta, "Conserved Nets for modeling and simulation of
FMSs," submitted to J. of Manufacturing Systems.

[7] Y. Narahari and N. Vishwanahham, "A Petri net Approach to the Modeling and
Analysis of Flexible Manufacturing Systems," Annals of Operations Research,
Vol. 3, 1985.

[8] E. Best and P. S. Thiagarajan, "Some Classes of Live and Safe Petri Nets," in
Concurrency and Nets: Advances in Petri Nets (Edited by J. Hartmann, K.V.
Genrich, and G. Rozenberg), Springer-Verlag, Berlin; New York, 1987.

[9] F. Commoner and A. W. Holt, "Marked Directed Graphs," J. of Computer and
System Sciences, No. 5, 1971.

[10] M. Hack, "Analysis of Production Schemata by Petri Nets," Technical Report
94, Project MAC, Massachusetts Institute of Technology, Cambridge, Mas­
sachusetts, 1972.

www.manaraa.com

76

[11] G. K. Hutchinson and A. T. Clementson, "Manufacturing Control Systems: An
Approach to Reducing Software Costs," Robotics and Computer integrated Man­
ufacturing, Vol. 1, No. 3/4, 1984.

[12] Meng Chu Zhou and Frank Dicesare, "A Petri Net Design Method for Auto­
mated Manufacturing Systems with Shared Resources," Proc. IEEE Int. Conf.
on Robotics and Automat., IEEE Computer Society Press, Washington, DC,
1990.

[13] R. Suri and C. K. Whitney, "Decision Support Requirements in Flexible Manu­
facturing," J. of Manufacturing Systems, Vol. 3, No. 1, 1984.

[14] P. J. Egbelu and J. M. A. Tanchoco, "Characterization of AGV Dispatching
Rules," Int. J. of Production Research, Vol. 22, No. 3, 1984.

[15] P. J. Egbelu, "Pull Versus Push Strategy for Automated Guided Vehicle Load
Movement in a Batch Manufacturing System," J, of Manufacturing Systems,
Vol. 6, No. 3, 1987.

[16] Roberta S. Russel and J. M. A. Tanchoco, "An Evaluation of Vehicle Dispatching
Rules and Their Effect on Shop Performance," Material Flow, 1984.

[17] Allen Carrie, Simulation of Manufacturing Systems, John Wiley & Sons, New
York,1988.

www.manaraa.com

77

Appendix: Conserved Nets

A Petri net is defined formally as the tuple W = {P,T,A,M), where P is the

set of places {PI ,P2^" ' ̂ Pn) , T is the set of t ransi t ions (g , ' " , and A, M

are functions. M is marking of P and the number of tokens in p^ is represented as

M[pi). The set of AT = P U T is called a node set and an element of Wj 6 iV is called

a node. The connection relationship between node nj and node rtj is represented

by A{ni,nj). If a directed arc connects from n^- to nj the value of A{ni,nj) is 1.

Otherwise the value of A{ni^nj) is zero.

In addition, the following attributes are attached to Petri net elements to increase

the modeling power of a Petri net, and they can be exploited for the simulation of

FMSs.

1. Each place has a capacity, and a processing time PT{p^).

2. Each token is identified as an individual object, and belongs to a certain type.

3. Each output arc of a transition has attached to it a set of token types to flow.

4. Each output arc of a place can have attached to it a predicate for a decision on

token movement.

Originally, the marking of tokens under transition firing rule is based on the

deletion and creation of tokens. When a transition fires, tokens in the input places

are deleted and new tokens are created in the output places of the transition. In

modeling an FMS, tokens represent resources or jobs in the system. These tokens are

flow objects in the system, and must be conserved in a net. Rather than being based

on the creation and deletion of tokens, the transition firing rule needs to consider

www.manaraa.com

78

the token movement such that tokens flow in a net without any transformation.

Four kinds of token flows occur in a net. The possible token flows at each node are

determined by examining the specification of token types attached to the output arcs

of transitions. Let and be possible input token flow and output token flow

a t a n o d e n i i n a n e t G = { P , T , A) .

1. Input token flows at a place.

The possible input tokens at a place are determined by the union of token sets

specified at the input arcs of the place. If a place p has n input arcs and the

set of allowable token flows, a^, is specified at the i th input arc, the possible

input tokens at p is determined as

2. Output token flows at a place.

When a token (combined or original) resides in a place p, it moves along the

output arcs of the place without any transformation (note that there is at most

one arc between any two nodes), i.e., Fp =* Fp

3. Input token flows at a transition.

The possible input tokens at a transition are determined by the product of

token sets from the output token flows of input places. If a transition t has n

input arcs (i.e., n input places), and possible output tokens at the i th input

places is F*., then the possible input tokens of t is:

= Fp ̂ X X • • • X Fp ̂

www.manaraa.com

79

4. Output token flows at a transition.

The possible output tokens at a transition are determined by the product of

token sets specified at output arcs of that transition. When a transition t has

n output arcs, and each arc has attached to it a set of token types a,j, then the

possible output tokens at t is:

F* = X a2 X • • • X an

From the above results, the possible token movements at each node can be

determined. To guarantee conservativeness in a net, the input and output token

flows at each node should be same. We develop the following definition of Conserved

nets.

Definition: G = (P , T , A) in which the specification of token flows is attached to

the output arcs of transitions is called Conserved net if the following conditions hold

in the net:

1. A { n i ^ , n j) = 1 or 0, for any pair of nodes and n j .

2. When a transition has more than one input place,

any element of * Fp^ ^ any element of *Fpj

where pj and pj are any pair of input places.

3. *Fi = F*, for all t .

From the definition of a conserved net, the following properties are obtained.

Property 1: A conserved net can be decomposed into subnets for the flow of each

www.manaraa.com

80

token type.

Property 2; A decomposed subnet of a token type flow is a strongly connected,

closed subnet, and consists of several directed circuits.

Property 3: When two decomposed subnets of different token flows share common

paths, the paths start and end with transitions.

Property 4: When two directed circuits in a subnet of a token type flow share

common paths, the paths start and end with places.

At below, the liveness of Conserved Petri net system are briefly described without

proof. Before we present liveness conditions, two Petri net systems will be considered.

When a place in a r-system has more than one output arc, the marked token in

the place will move to any one of the arcs randomly whenever the connected transition

meets enabling conditions. But, in a d-system, a marked token in a place which has

more than one output arc must move along one of the output arcs according to the

decision specifications attached to the arcs.

Proposition 1: An r-system, W = {P,T,A,M), is live if and only if the number of

t o k e n s i n t h e s y s t e m , M (p ^) , i s g r e a t e r t h a n z e r o a n d l e s s t h a n C ' { p i) .

Proposition 2; A d-system, W = [P,T, A, M), is live if the number of tokens in the

system is greater than zero and less than = l,2,...,m}, where

G f j is the k th directed circuit in C? = { P , T , A) , and m is the number of directed

www.manaraa.com

81

circuits in G.

Proposition 3: When two subsystems W-^ and W2 which are live are combined

sharing a common path which starts and ends with transitions, the combined system

is live if and only if the following conditions are avoided:

(i) non-sharing places of a subsystem are not marked with tokens, and

(ii) all non-sharing places in the other subsystem are marked with tokens of the

same number as the capacity.

www.manaraa.com

82

PART III.

PUSH AND PULL RULES FOR DISPATCHING AUTOMATED

GUIDED VEHICLES IN A FLEXIBLE MANUFACTURING SYSTEM

www.manaraa.com

83

Push and Pull Rules for Dispatching Automated Guided

Vehicles in a Flexible Manufacturing System

D. S. Yim and Richard J. Linn

Department of Industrial and Manufacturing Systems Engineering

Iowa State University, Ames, Iowa 50010, USA

Abstract

Automated Guided Vehicle (AGV) systems are widely used in flexible manufac­

turing systems (FMSs) for material handling purposes. Although the AGV systems

have provided high flexibility, the design issue on AGV dispatching rules is still to

be resolved. The AGV dispatching rules in an FMS are generally based on a push

or a pull concept. A simulation study is accomplished to investigate the effect of

these dispatching rules on the FMS performance. The developed simulation model

consists of two modules: a Petri net model and an AGV dispatcher. Two modules are

integrated so that the AGV dispatcher controls AGV tokens in the Petri net model.

It was shows that there is no significant difference in output rate between push- and

pull-based AGV dispatching rules in a busy FMS.

Keywords: Push and pull rules, AGVs, Petri nets. Simulation

www.manaraa.com

84

Introduction

During the past several years, Automated Guided Vehicle (AGV) systems have

received much attention by designers and engineers of automatic manufacturing sys­

tems. The AGV is a battery-powered, wire-guided vehicle, and is controlled by an

on board or a network control computer. The AGV systems have been widely used

in Flexible Manufacturing Systems (FMS). Although they provide higher flexibility

than conventional systems, the design issues of AGV control systems in FMSs are

still to be resolved. The AGV control system dispatches idle vehicles to move pallets,

parts, and tools between work centers in an FMS. The complex interaction between

material flows and processes requires an efficient vehicle dispatching procedure to

maximize the FMS performance.

Because of its ability to graphically and hierarchically represent systems with

both asynchronous and concurrent properties, Petri nets have proved to be an efficient

tool to model the complex interactions among different processes in an FMS. In this

study, a Petri net-based simulation model was developed for an AGV operating in an

FMS. The model was used to analyze the effect of different AGV dispatching rules

on the FMS system performance.

AGV Dispatching Rules

Vehicle dispatching rules involve assigning vehicles to move loads, and concerns

the relationship between the vehicle resource and the set of parts to be moved. Gener­

ally, AGV dispatching rules are classified into work-center-initiated rules and vehicle-

initiated rules. When a work center has a part to be routed for the next operation.

www.manaraa.com

85

it selects a vehicle among a set of idle vehicles according to the work-center-initiated

rule. When a vehicle becomes idle, it selects a task (i.e., a part to move) to serve

under the vehicle-initiated rule. The vehicle initiated rule can be further classified

into a source-driven rule and a demand-driven rule. The source-driven rule operates

on a push concept: an idle vehicle selects a part to move from an output queue that

has the highest priority. The demand-driven rule operates on a pull concept: an

idle vehicle selects the part that has the highest demand from its succeeding work

stations.

The simulation has been recognized as an invaluable tool in evaluating the per­

formance of AGV systems. A number of studies on the AGV dispatching rules were

based on the simulation technique (Egbelu and Tanchoco, 1984; Egbelu, 1987; Rus-

sel and Tanchoco, 1984; Sabuncouglu and Hommertzheim, 1989; Ulgen and Kedia,

1990). Egbelu and Tanchoco (1984) compared the performance of several work-

center-initiated rules and vehicle-initiated rules in a batch manufacturing system.

They showed that in a busy shop the vehicle-initiated rule has a more significant

effect on system performance than the work-center-initiated rule. Egbelu (1987) fur­

ther compared the performance of a demand-driven rule and several source-driven

rules in a batch manufacturing system. He concluded that the demand-driven rule is

competitive to source-driven rules.

In FMS environment, a vehicle-initiated rule consists of a part selection function

and process selection function. Very often parts have alternative routings where they

may be sent to different work centers. An idle vehicle needs to select not only the

part to move but also its destination (next process). The push and pull concepts

of vehicle-initiated rules can be implemented on the basis of the execution order of

www.manaraa.com

86

part selection and process selection functions. In the push rule, an idle vehicle first

selects a part to move and then determines the destination of the selected part. In

a pull-based rule, on the other hand, a work center with the highest need for part

replenishment is selected first. Then, a part is selected among a set of parts which

can move to the selected work center. Thus, the two AGV dispatching rules—push

and pull—have their own characteristics. In the push-dispatching rule, the parts in

the outgoing buffers of work centers are a major concern, while the incoming buffer

status of each work center is a major decision factor in the pull-dispatching rule.

By pairing the part and process selection functions, numerous different push and

pull rules can be generated. The following part and destination selection rules were

included in the investigation. Some of these rules were adopted from the literature

(Egbelu and Tanchoco, 1984; Russel and Tanchoco,1984).

1. Part selection rule

• Longest waiting time rule (LWT): select a part with the longest waiting

time.

• Minimum remaining outgoing queue space rule with longest waiting part

(MROQ): select a longest waiting part which is in the output buffer with

minimum remaining queue space.

2. Process selection rule

• Longest inter-arrival time rule (LIT): select a work center which has ex­

perienced the longest inter-arrival time of parts since the last job arrival.

• Maximum remaining incoming queue space rule (MRIQ): select a work

center with maximum remaining queue space at input buffer.

www.manaraa.com

87

Table 3.1: Push and pull AGV dispatching rules

Rule number Part selection Process selection

Push 3
4
5
6

1
2

LWT
LWT
LWT
MROQ
MROQ
MROQ

MWQ
LIT
MRIQ
MWQ
LIT
MRIQ

10
11
12

LWT
LWT
LWT
MROQ
MROQ
MROQ

MWQ
LIT
MRIQ
MWQ
LIT
MRIQ

• Minimum work-in-queue rule (MWQ): select a work center with minimum

incoming queue size in terms of processing time.

Twelve different push and pull rules, as shown in Table 3.1, were included to

investigate the effect of vehicle-initiated rules.

Push-based AGV dispatching procedure

Push-based procedure selects a part (source) first, then determines to where

(destination) it should be moved. Once the source and destination are determined,

an AGV is selected to perform the selected load movement. When selecting a part,

a set of workstations (source) that are not assigned any AGV to pick up their loads

is first determined. Then, a part is selected from the output buffers of this set of

workstations according to the part selection rule specified. If no such a station is

found, or no part is selected, the procedure is aborted.

Once a part is selected from the set of workstations, a destination for the part

www.manaraa.com

88

will be determined according to the process selection rule specified. The input buffer

of the destination must not be full. If no destination is possible for the part, another

part from the source set will be picked.

When a source and a destination are determined, an idle AGV will be selected

to perform the part movement. If no AGV is idle, the procedure is aborted.

Pull-based AGV dispatching procedure

Pull-based AGV dispatching procedure first selects a workstation (destination)

which can receive parts according to the process selection rule specified. Then, a list

of parts which can be moved to this selected workstation is identified from the output

buffers of other workstations. Finally, the part selection rule is applied on this list to

select a part (source).

AGV System Description

Generally, an AGV system contains four major components: (1) the transport

network, (2) the vehicles, (3) the interface between the production system and AGVs,

and (4) control system. There are basically three types of transport network: single

line, simple loop, and network type. The network type system requires more complex

control logic, especially when AGVs move along the line bidirectionally. To simplify

the control over collision and blocking problems, unidirectional path is commonly

used in the network type configuration. Six types of automated guided vehicles are

available: unit load, towing, pallet truck, fork truck, light load, and assembly line

vehicles (Miller and Walker, 1990). Among them, the unit load vehicles become more

popular recently.

www.manaraa.com

89

40 feet I 40 feet 50 feet

tr

MC4

In. TT
MC5

-O.

UNLOAD

IT.—cr

MC3

• cr

MC2

_a

MCI

MC7
n

MC6
n

40 feet

40 feet

20 feet

LOAD • : Control point

Figure 3.1: A hypothetical FMS

The FMS system considered in this simulation study is shown in Figure 3.1.

The track layout is a network type, and AGVs move unidirectionally through the

network. The network is subdivided into nonoverlapping zones so that no more than

one vehicle is permitted within a zone at any time, prohibiting the collisions between

AGVs. The zones are identified by a set of control points, at which the AGV receives

the command from a control computer such as wait, move, change velocity. Twenty

control points are identified in the FMS, containing pick-up, drop-off, diverging, and

converging points at intersections.

There are nine workstations including seven machine centers, one load station,

and one unload station. Each machine center consists of one machine, one input

buffer, and one output buffer, except the machine centers MC 6 and MC 7. Each of

them contains two identical machines, one input buffer, and one output buffer. The

www.manaraa.com

90

interface between workstations and AGVs occurs at the input and output buffers of

workstations. At every workstation, AGV picks up a part from the output buffer and

deliver a part to the input buffer.

Petri Net Modeling of the AGV and FMS

The FMS simulator developed in this study comprises two subsystems: an AGV

dispatcher and a Petri net-based FMS. The AGV dispatcher is responsible for dis­

patching AGVs in a Petri net model. The hardware components of FMS were modeled

with Petri nets.

Petri net modeling is becoming attractive for analyzing and simulating man­

ufacturing systems (Peterson, 1984; Kodate, et al., 1987; Cheng, 1987; Beck and

Krogh, 1986; Bruno and Morisio, 1987; Vallete, 1984; Martinez, et al., 1987). For

more details about Petri nets, readers are referred to Peterson (1984). Basically,

Petri net is capable of modeling the multi-condition processes that has concurrency

and cooperation. A Petri net consists of four parts; namely, a set of places P, a

set of transition T, flow relations F, and initial marking of tokens Mq. Pictorially,

places are represented by circles, transitions by bars, flows by arcs, and tokens by

dots. Places in a Petri net could represent waiting conditions for program execution;

transitions could represent occurrence of events in a real system; and the token would

then correspond to the number of occurrence of the events. The resulting interpreted

net with its marking simulates the synchronization of the events. The evolution of

tokens indicates which conditions cause a transition to fire (to be enabled). The most

important modeling property of Petri net is the ability to represent concurrency and

conflict.

www.manaraa.com

91

The Petri net exploited in this study allows colored tokens, inhibited arcs, and

capacitated, timed places to model and simulate the AGV system. Place and token

objects were classified to facilitate the modeling of FMSs. The classified places cor­

respond well with physical elements of the FMSs (See Table 3.2). Each place object

has its own attributes and allows only the specific token types. In the current Petri

net modeling, token objects are classified as active tokens or passive tokens. The ac­

tive tokens such as vehicles, machine resources, personnel resources, robots can move

to next places voluntarily. The AGV tokens are controlled by the AGV dispatcher

during the simulation. Passive tokens such as jobs, pallets, and fixtures cannot move

without being combined with active tokens.

The Petri net model for the FMS is shown in Figures 3.2, 3, and 4. Figure 3.2

shows a Petri net model at a transportation level where AGV movement is the major

focus, and work stations are abstracted for the detail modeling. The zone control

logic is represented by using inhibited arcs which have circular head instead of arrow.

Pick up and delivery processes are associated with PU and DL places. AT places

represent the places where idle AGVs are waiting.

Figures 3.3 shows the detailed models for the machine center with two machines,

and Figure 3.4 shows the load station and the unload station. Each machine center

consists of one input and one output buffer (IB, OB), operations (OP) and machine

resource available (RA) places. The job token in IB place moves to OP place being

combined with a machine token whenever one of two machines is available. After

processing in the OP place, the job token moves to the OB place, and machine

token moves to the RA place. At load and unload stations, job tokens are created

and deleted. While the load station contains a job creation (JC) place in which job

www.manaraa.com

92

Table 3.2: Place objects for Petri net modeling of FMSs

Objects Mnemonic
name

Token types®
through input arcs

Attributes^

Operation OP (A,J,P) MTBF, Process time
Decision arc

Input buffer IB J or (J,P) Capacity
Token link method

Output buffer OB J or (J,P) Capacity
Token link method

Resource
available

RA A

Job creation JC No token Token creation rule
Job deletion JD J
Control point CP C or (C,J,P) Decision arc
Line LN C or (C,J,P) Process time

Decision arc
Transporter
available

TA C Decision arc

Pick-up PU (C,J,P) Pick-up time
Delivery DL (C,J,P) Delivery time
Job storage JS J Capacity

Token link method
Pallet storage PS P Capacity
a. Token types.

A; Autonomous tokens (machines).
C: Controlled tokens (vehicles).
J: Job tokens.
P: Passive tokens except job tokens (pallets).

* A combined token is represented as a turple of each token type.
b. The capacity of every place is one except IB, OB, JS and PS.

www.manaraa.com

CP] CP) CP) ,LN LN)
LN

MC7 .PU, CP DL TA CP TA, DL

PU TA, DL) LN MC5 MC3 LN,

CP CP LN .LN, LN LNJ

CP PU) MC6 J-H CP PUF (TA, DL TA, DL, .PU, LN
TA,

.LN,
CP) DL CP) MC4 LN MC2

CP) LN CP LN DL) CP) CP .LN, LN

TA
DL\ (TA PU) CP

.LN,
1 JNLOAl I

CP) .LN)<-MCa

LOAD TA, .PU,

Figure 3.2: A Petri net model of an FMS at transportation level

www.manaraa.com

94

I H@ J

MC;

Figure 3.3: A Petri net model of a machine center with two machines

tokens are created, the unload station contains a job deletion (JD) place to delete

the job tokens. When a part is removed in the unload station, the separated pallet is

stored in pallet storage (PS) place. In the load station, a job in the job storage (JB)

and a pallet in PS are combined according to a job release rule. The job release rule

is invoked when the output transition of these places are enabled in order to select

appropriate tokens.

Besides the inherent advantages of Petri net modeling, the simulation of an AGV

system in FMSs using Petri net presents several advantages.

1. The synchronous and asynchronous mechanism of FMSs can be easily modeled.

Also, bidirectional as well as unidirectional AGV systems are easily modeled.

2. A simulation program is easily developed by using the Petri net mechanism.

www.manaraa.com

95

7

Unload

Figure 3.4: A Petri net model of load/unload stations

www.manaraa.com

96

3. Animation of a simulated system can be accomplished by using a Petri net

graph and objects that correspond with the physical elements of FMSs. The

validation of simulation model is possible by an interactive animation of the

Petri net graph.

The Petri net modeling has limitations in representing high-level control systems

of FMSs. While low-level control systems (i.e., machine level control systems) can be

well represented in Petri nets, the high-level control systems which require complex

decision making process including the analysis of system status and historical data are

difficult to model in Petri nets (Valette, 1984; Camurri and Frixione, 1990). That is

the reason why AGV dispatcher was not implemented in Petri nets. When additional

high-level control rules such as scheduling rules are needed to resolve conflicts in the

Petri net model, external modules must be added.

Experimental Design and Assumptions

Assumptions

Several assumptions were made to keep the investigation in a manageable scope.

The following assumptions were held throughout the investigation.

1. Eight job types are to be produced. Their processing times and routings are

shown in Table 3.3.

2. A job is loaded into the system at load station when the corresponding pallet

is available. When multiple jobs exist, the job type with small number of jobs

launched is released whenever it is possible.

www.manaraa.com

97

Table 3.3: Job routings for a hypothetical FMS

Job type Routing Process time (min) Par mix
1 1,2,(7,8),6,9 5,16,(30,30),20,5 8
2 1,(3,4),(7,8),5,9 5,(16,16),(30,30),10,5 8
3 1,(7,8),2,(3,4),9 5,(30,30),15,(15,15),5 8
4 1,2,(7,8),6,(3,4),9 5,10,(20,20),10,(10,10),5 8
5 1,4,3,5,(7,8),9 5,16,20,10,(10,10),5 8
6 1,2,6,(7,8),(3,4),9 5,10,10,(30,30),10,5 8
7 1,(3,4),5,6,(7,8),9 5,(10,10),10,10,2G,5 8
8 1,(7,8),(3,4),5,6,9 5,(30,30),(12,12),10,10,5 8

* Routing number.
1:L0AD 2:MC1 3:MC2 4:MC3 5:MC4
6;MC5 7:MC6 8;MC7 9;UNL0AD

* The routing numbers in a parenthesis means alternative routings.

3. Parts at each machine centers are processed on a First-come First-served basis.

4. Machine breakdowns are excluded in this study.

5. AGVs are unit load vehicles and they travel at 120 feet/min. Pick-up and

delivery times are 0.5 minutes respectively.

6. The travel of AGVs between two locations will follow the shortest path possible.

7. Each AGV will wait in front of the work station (AT places in the Petri net

model) after unloading a part on to input buffer.

8. Each pallet type has the same number of pallets.

Minimum number of AGVs and buffer capacity

In order to reduce the effect of the number of AGVs, the minimum number of

AGVs which can perform target production must be determined. The detail of the

www.manaraa.com

98

analytical procedure for obtaining the minimum number of AGVs is described in

Appendix. A minimum number of 2 AGVs were determined under the assumption

that a target production rate is 60 per 8 hour shift. From simulation experiments,

it was found that the output rate of the system with 2 AGVs was lower than the

output rate of the system with 3 AGVs. But, increasing the number of AGVs more

than three did not improve the performance of the system. For the rest of simulation,

therefore, three AGVs were used in the system.

Since the AGV utilization with three AGVs was about 87 %, the shop is con­

sidered busy. It was shown in the literature (Egbelu and Tanchoco, 1984) that AGV

selection rule has little effects on the system performance than part and process selec­

tion rules when AGV resource is rather restricted (i.e., busy shop). When there are

several AGVs waiting for mission, the least utilized AGV is selected in this simulation

study.

To determine the buffer capacity, a number of initial simulation runs was accom­

plished. When it was assumed that infinite number of pallets is in the system, buffer

capacity of three gives the best result in terms of output rate and work in process.

Therefore, all buffers are assumed to have capacity of three.

Simulation Output Analysis

To evaluate the performance of AGV dispatching rules, the analysis of simulation

output was based on steady-state statistics of output rate. Initially, there is no part

in the system, all machines are idle, all available pallets are at loading area, and

AGVs are idle (i.e., each machine token is at the corresponding RA place, pallet

tokens are at PS place, and each AGV token is at an AT place in the Petri net

www.manaraa.com

99

model). After the steady-state point was reached (i.e., average output rate shows to

be stable), the simulation was executed for 4320 minutes, and steady-state statistics

were estimated. To decrease the bias in the estimation of mean values, the transient

state of simulation was excluded from the output collection.

The model validation is accomplished using an interactive animation of a Petri

net model. The token movements in the Petri net model are graphically displayed

so that false modeling can be detected. When a transition fires or a shop locks, the

related information is displayed to users.

Table 3.4 summarizes the simulation results of different dispatching rules on the

average output rate with different number of pallets in the system. As the number

of pallets increases, the shop locking also increases. The detailed explanation about

shop locking phenomenon in AGV systems can be found in the literature (Egbelu

and Tanchoco, 1984). While seven rules show shop locking under infinite number of

pallets, only one rule (pull rule with MRIQ-fMROQ) shows shop locking when two

pallets for each job type is available in the system. This confirms the fact pointed out

in the literature (Sabuncouglu and Hommertzheim, 1989) that the large number of

parts in the system increases the possibility of shop locking due to excessive congestion

and traffic on the shop floor. It is also shown that, in general, the average output rate

increases as the number of pallets increases from 2 to 3, but drops once the number

of pallets goes beyond 4. Hence, the average output rate is not increased by allowing

the large number of pallets in the system. Too small number of pallets in the system

also decreases average output rate as well.

In order to reduce the effect of shop locking on the dispatching rule performance,

further experiment was performed with the following conditions imbedded:

www.manaraa.com

100

Table 3.4; Result of average output rate/8 hrs

No. of pallets for each job type
Rules 2 3 4 5 6 oo

1 LWT+MWQ 57.5 65.2 68.2 62.6 .59.5 59.5
2 LWT+LIT 57.5 63.4 66.8 64.0 64.0 64.0

Push 3 LWT+MRIQ 52.5 62.6 63.4 62.6 64.0 64.0
4 MROQ+MWQ 55.9 65.3 64.4 62.6 N* N
5 MROQ+LIT 58.2 63.3 63.2 N N N
6 MROQ+MRIQ 50.4 62.2 63.5 63.7 58.1 N
7 MWQ+LWT 58.6 63.6 66.2 66.2 66.2 62.8
8 LIT+LWT .56.2 65.6 N 65.4 N N

Pull 9 MRIQ+LWT 52.0 62.1 65.3 59.4 46.0 .50.9
10 MWQ+MROQ 57.1 65.5 65.2 N N N
11 LIT+MROQ 57.3 64.8 N N N N
12 MRIQ+MROQ N N 63.4 57.5 N N

Overall Average^ .55.7 64.0 65.0 62.7 .59.6 60.24
a: Shop locking during simulation.
b: Excluding shop locking occurrences.

(1) four pallets for each job type is available in the system,

(2) an AGV will not move the selected parts if

A. the input buffer of the first machine for the part in load station has only one

remaining space, and

B. the output buffer of the part to be moved has more than one remaining space,

and the, input buffer of the next work station has only one remaining space.

These two conditions are included in the experiment in order to provide the

maximum output rate, and to reduce the shop locking at the same time. Condition

2 aims at reducing the shop locking by not performing the load movement that has

high possibility of causing shop locking.

www.manaraa.com

101

Table 3.5: Result of average output rate under two conditions

Output rate
Rules Mean/

8 hrs
Std. t

1 LWT+MWQ 67.6 2.20 1.284
2 LWT+LIT 66.3 0.97 1.572

Push 3 LWT+MRIQ 66.3 1.18 1.292
4 MROQ+MWQ 66.0 1.92 0.638
5 MROQ+LIT 63.2 1.76 -0.895
6 MROQ+MRIQ 64.8 1.12 0.022
7 MWQ+LWT 63.8 1.37 -0.712
8 LIT+LWT 63.6 0.98 -1.199

Pull 9 MRIQ+LWT 64.8 1.80 0.014
10 MWQ+MROQ 62.8 1.37 -1.442
11 LIT+MROQ 63.3 1.20 -1.229
12 MRIQ+MROQ 64.8 1.76 0.014
Overall Average 64.8

Table 3.5 shows the simulation result in average output rate under the above

conditions. The shop locking was not observed at all. In addition to mean values,

estimated standard deviations and t statistics are included in the table. The t statis­

tics are calculated under the hypothesis that the average output rate of a rule is same

as the overall average output rate, 64.8 per 8 hours. From the table, it is shown that

there is no significant difference between the average output rate of any rule and the

overall average output rate at 5% significant level since all |(| < t(8; 0.025) = 2.306.

Although the significant difference between the average output rate of any rule

and the overall average output rate is not noticed, a pairwise comparison was done to

see if any rule is particularly better. The statistical procedure is outlined as follows

(Cox, 1987):

www.manaraa.com

102

Hrp : m - jxj =0

HQ : m - fij 7^ 0

ViZÎL

^ ' i / { n i - l) + s j / { n j - 1)

Note that t j ^ j and f j ^ j are the t statistic and the degree of freedom respectively

for the hypothesis that average output rates of rule i and rule j are same. Also,

5,j, and raj are the estimated mean and standard deviation of average output rate,

and the number of samples from the simulation output with rule i. The statistics, as

represented in the Table 3.6, show that there is no significant difference in average

o u t p u t r a t e b e t w e e n a n y t w o r u l e s s i n c e \ t i j \ < 0 . 0 2 5) , f o r a l l i a n d j .

Concluding Remarks

A Petri net-based simulation model of an FMS with an AGV system was devel­

oped and used to investigate the effect of the AGV dispatching rules on the system

performance. Average output rates was used to compare the performance of 12

vehicle-initiated AGV dispatching rules. Although it is difficult to develop a basic

model, based on the simulation analysis, which will include all different possibilities,

the following conclusions can be made:

1. The shop locking can be effectively decreased by decreasing the number of

pallets in the system, thus, the system performance can be maximized. But,

www.manaraa.com

103

Table 3.6; t statistics under the hypothesis that average output rates of a pair of
rules are same

Rule 2 3 4 5 6 7 8 9 10 11 12

1 0.541 0.521 0.548 1.562 1.134 1.466 1.661 0.985 1.852 1.716 0.994
• (11) (12) (16) (15) (12) (13) (11) (15) (13) (12) (15)

2 0.000 0.139 1.543 1.012 1.489 1.958 0.734 2.085 1.944 0.746
(15) (12) (12) (16) (14) (16) (12) (14) (15) (12)

3 0.133 1.463 0.922 1.383 1.760 0.697 1.936 1.783 0.708
(13) (14) (16) (16) (15) (14) (16) (16) (14)

4 1.075 0.540 0.933 1.113 0.456 1.357 1.192 0.461
(16) (13) (14) (12) (16) (14) (13) (16)

5 -.767 -.269 -.199 -.636 0.179 -.047 -.643
(14) (15) (13) (16) (15) (14) (16)

6 0.565 0.806 0.000 1.130 0.914 0.000
(15) (16) (13) (15) (16) (14)

7 0.119
(14)

-.442
(15)

0.516
(16)

0.275
(16)

-.448
(15)

8 -.586
(12)

0.475
(14)

0.194
(15)

-.596
(13)

9 0.884
(15)

0.693
(14)

0.000
(16)

10 -.275
(16)

-.897
(15)

11 -.704
(14)

* The figure in the paranthesis represents the degree of freedom.

www.manaraa.com

104

too small number of pallets decreases the output rate due to limited part flow

in the system.

2. In a busy FMS, the vehicle-initiated rules both push-based and pull-based rules

perform equally well in terms of average output rate when the shop-locking is

significantly reduced by (1) restricting the number of pallets to the level that

provides the maximum output rate, and (2) avoiding the load movement which

has high possibility of causing shop-locking.

In this study, the performance of push-based and pull-based AGV dispatching

rules were investigated when the FMS was set in a busy state. The behavior of the

dispatching rules in a non-busy shop would be an interesting extension of the study.

www.manaraa.com

105

References

[1] P. J. Egbelu and J. M. A. Tanchoco, "Characterization of AGV Dispatching
Rules," Int. J. of Production Research, Vol. 22, No. 3, 1984.

[2] P. J. Egbelu, "Pull Versus Push Strategy for Automated Guided Vehicle Load
Movement in a Batch Manufacturing System," J. of Manufacturing Systems,
Vol. 6, No. 3, 1987.

[3] Roberta S. Russel and J. M. A. Tanchoco, "An Evaluation of Vehicle Dispatching
Rules and Their Effect on Shop Performance," Material Flow, 1984.

[4] Ishan Sabuncouglu and Don L. Hommertzheim, "An Investigation of Machine
and AGV Scheduling Rules in a F MS," Proa, of the Third ORSA/TIMS Con­
ference on Flexible Manufacturing Systems, Elsevier, Amsterdam; New York,
1989.

[5] Onur M. Ûlgen and Pankaj Kedia, "Using Simulation in Design of a Cellular
Assembly Plant with .Automatic Guided Vehicles," Proc. of the 1990 Winter
Simulation Conference, 1990.

[6] R. K. Miller and T. C. Walker, FMS/CIM Systems Integration Handbook, The
Fairmont Press, Inc., Lilburn, GA, 1990.

[7] J. L. Peterson, Petri Net Theory and the Modeling of Systems, Prentice-Hall,
Englewood Cliffs, NJ, 1981.

[8] Hidemi Kodate, Ken'ichi Fujii, and Fuzuyoshi Yamanoi, "Representation of FMS
with Petri Net Graph and its Application to Simulation of System Operation,"
Robotics and Computer Integrated Manufacturing, Vol. 3, No. 3, 1987.

[9] T. C. E. Cheng, "A Simulation Study of AGV Dispatching," Robotics and Com­
puter Integrated Manufacturing, Vol. 3, No. 3, 1987.

[10] Carolyn L. Beck and Bruce H. Krogh, "Models for Simulation and Discrete Con­
trol of Manufacturing System," Proc. IEEE Int. Conf. on Robotics and Automat.,
IEEE Computer Society Press, Washington, DC, 1986.

[11] Giorgio Bruno and Maurizio Morisio, "Petri Net based Simulation of Manufac­
turing Cells," Proc. IEEE Int. Conf. on Robotics and Automation, 1987.

www.manaraa.com

106

[12] R. Valette, "Nets in Production Systems," Lecture Notes on Computer Science,
255, Springer-Verlag, Berlin; New York, 1984.

[13] Javier Martinez, Pedro Muro, and Manuel Silva, "Modeling, Validation and
Software Implementations of Production Systems Using High level Petri nets,"
Proc. IEEE Int. Conf. on Robotics and Automat., IEEE Computer Society Press,
Washington, DC, 1987.

[14] Antonio Camurri and Macercello Frixione, "Structured Representation of FMS
Integrating SI-NETS and High Level Petri Nets," Applied Artificial Intelligence,
Vol. 4, 1990.

[15] C. P. Cox, A Handbook of Introductory Statistical Methods, John Wiley & Sons,
New York, 1987, pp 59.

[16] W. L. Maxwell and J. A. Muckstadt, "Design of Automatic Guided Vehicle
Systems," HE Transactions, Vol. 14, No. 2, 1982.

www.manaraa.com

107

Appendix: The Minimum Number of AGVs

The desirable number of AGVs to accomplish the given load movements (it is

assumed that target production plan and job routings are known) must be determined

when the AGV dispatching rules are investigated. Because too many AGVs may

create a higher possibility of collision and blocking and hence prohibit the efficient

control of AGVs, the minimum number of AGVs needed to perform the assigned

tasks was considered in order to minimize the effect that the number of AGVs has

on the dispatching rule performance. Maxwell and Muckstadt (1982) constructed

a linear programming model to obtain the minimum number of AGVs. But, they

ignored random effects in the system, specifically, the location of AGVs and parts at

a given time. The following section describes an extended procedure to determine the

minimum number of AGVs needed considering the random effects under steady state

when the idle time of the AGVs is ignored. With the information on the minimum

number of AGVs determined analytically, the minimum number of AGVs considering

the time-dependent effects will be determined from the experimental simulation.

Let F (i , j) be the required flow matrix from i to j node (i.e., pick-up or delivery

points) for the movements of parts during a specified working time, Tw The required

f l o w m a t r i x i s o b t a i n e d f r o m t h e t a r g e t p r o d u c t i o n r a t e a n d j o b r o u t i n g s . L e t D { i , j)

be the transportation time from i to j node obtained by the shortest route. It is

assumed that there are always parts waiting for an AGVs service. The probability

that the AGV is waiting at j node in steady state, Pw{j), is

P w l i) = ̂ F(t, j)/ " £ " £ F { i , j)
i=l i=lj=l

Also, the probability that i-th pick-up node calls an idle AGV in steady state, P c (i) ,

www.manaraa.com

108

IS
n n n

P 4 i) =
j=l i=lj=l

Complete movement of a load includes (1) empty vehicle moving to a pick-up

point, (2) pick up a part, (3) moving to a drop-off point with the loaded part, and

(4) delivery.

The required average transportation time for the empty vehicle, T y , is

n n n n

i=lj = l i = l j = l

And, the required average transportation time for l o a ded vehicle, Tp, is

n n

= E E
i = i j = i

Letting / and u be the pick-up and delivery time of a part at each work station, the

pick-up and delivery time for total part flow, T/, is:

n n

ri = E E J) •(' + "*
i = l j = l

And the minimum number of AGVs required to accomplish the load movements

during Tw can be obtained:

Minimum number of AGVs = (Tp + Ty +

www.manaraa.com

109

GENERAL SUMMARY

In this dissertation, a computer-aided simulation tool was presented. It is based

on Conserved nets which are a subclass of Petri nets to provide a formal and graphical

modeling language. The proposed Conserved nets are shown to be a good modeling

tool for the analysis and design of FMSs. They provide a simple analysis procedure

for the properties of Petri net models such as conservativeness, liveness, safeness,

and boundedness. Furthermore, simulation models can be easily obtained under the

modeling logic of Conserved nets. To facilitate the simulation modeling process, the

Petri net objects (places and tokens) are hierarchically classified to correspond to

hardware components of FMSs such as machines, AGVs, robots, pallets, and buffers.

Conserved nets are not appropriate for modeling high-level control systems.

These control systems are difficult to represent in Petri nets including Conserved

nets. That is the reason why the real-time control rules in high-level control systems

of FMSs are separately modeled. In executing a Petri net model, several conflicts

may occur. To resolve the conflicts, additional procedures are required. The high-

level control systems are modeled separately using a control specification language

and integrated with a Petri net model so that they resolve conflicts in Petri net

execution.

In this simulation tool, several systems such as Petri net modeling, control rule

www.manaraa.com

110

modeling, token player, and output analysis have been developed in order to be

extended and interfaced with other future systems. It was programmed by using the

Turbo-C language under a micro-computer with MS-DOS and EGA graphics.

Generally, there are several advantages in the Conserved net-based simulation

tool.

1. Flexibility in modeling hardware components of FMSs

2. Simplicity in modeling process

3. Simple development of simulation executive

4. Modularity of simulation program

5. Animation

It is uncertain how the modeling power of Conserved nets compares with general-

purpose simulation languages (e.g., GPSS, SLAM, SIMAN, etc.) in creating simula­

tion models, however, like the general-purpose simulation languages, the Conserved

nets provide more flexible models than automatic code generators (Haddock, 1987;

Mathewson, 1985 and 1989) and special-purpose simulation packages. Furthermore,

the modeling processes will be aided by classified Petri net objects which correspond

to hardware components of FMSs. The simulation executive (token player) can be

easily implemented by employing transition enabling and firing rules. The Petri net

objects and separated modules of high-level control rules make the simulation pro­

gram modular, hence, the modification and enhancement of the program is easily

performed. Animation of the simulation model is accomplished by animating Petri

net graphs. As shown with several examples, Conserved net models resemble the

www.manaraa.com

I l l

physical configuration of FMSs. Additional models or graphic display of the simula­

tion model are not required.

To accomplish a successful simulation of FMSs, there are still several require­

ments that need further study.

1. Extended Petri net objects

2. Models of diverse control rules

3. Output analysis specially for the simulation of FMSs

4. Experiment aid (e.g., capacity planning for a given FMS prior to the simula­

tion).

5. Optimizing design combined with the simulation

In this study, 13 place objects are classified to model hardware components of

FMSs. We do not believe that any real FMS can be modeled efficiently by these place

objects. More extensive and diverse-purpose place objects are required. As discussed

in Part II, we are considering an additional tool, a Petri net object definition system,

for creating new Petri net objects. According to the application, a modeler may

define the required place objects and token objects under the system. Then users

could make a model using the predefined objects.

The proposed control rule specification language has limitations to represent

more complex rules. We are considering an interface mechanism with-other systems

(e.g., expert system).

It is believed that the output analysis in simulation of FMSs has its own char­

acteristics. For example, the state of a system may not be steady even if the average

www.manaraa.com

112

number of jobs in the system is stable (even constant). This results from the fact

that there is a constant number of pallets in the system. To detect the steady state,

special procedures are required.

The optimal design of FMSs with simulation (Nandkeolyar and Christy, 1989;

Floss and Talavage, 1988; Mellichamp and Wahab, 1987; Talavage and Hannam,

1988) is a difficult job because the simulation is an evaluative technique: it only

provides estimates of performance measures. To obtain the optimal decision regarding

the design of FMSs, an evaluative technique must be interfaced with a generative

procedure which generates alternative sets of decisions. Usually this procedure is

time-consuming because generating alternative decisions requires a large number of

simulation runs. To achieve an automatic design procedure, the experiment support

system, output analysis system, new alternative generating system, and automatic

model modification system must be integrated with the simulation software.

www.manaraa.com

113

BIBLIOGRAPHY

[1] Peter C. Bell and Robert M. O'Keefe, "Visual Interactive Simulation- History,
Recent Developments, and Major Issues," Simulation, Vol. 49, No. 3, 1987.

[2] Paul Bratley, Bennett L. Fox, and Linus E. Schrage, A Guide to Simulation,
Springer-Verlag, Berlin; New York, 1987.

[3] R. Spinelli De Carvalho and John G. Crookes, "Celluar Simulation," 0. R.
Quarterly, Vol. 27, No. 1, 1976.

[4] Springer Cox, "Interactive Graphics in GPSS/PC," Simulation, Vol. 49, No. 3,
Sep., 1987.

[5] Georgios I. Doukidis and Ray J. Paul, "Research into Expert Systems to Aid
Simulation Model Formulation," Operational Research Society, Vol. 36, No. 4,
1985.

[6] John B. Evans, "Discrete Event Simulation Package for Modeling Entities with
many Aspects- A re-appraisal of the Activity Approach," Proc. of the Summer
Computer Simulation Conference, 1981.

[7] Mark S. Fox, Nizwer Husain, Malcolm McRoberts and Y. V. Reddy, "Knowledge-
Based Simulation: An Artificial Intelligence Approach to System Modeling and
Automating the Simulation Life Cycle," Artificial Intelligence, Simulation, and
Modeling, John Wiley & Sons, New York, 1989.

[8] F. Hank Grant, "Simulation in Designing and Scheduling Manufacturing Sys­
tems," Design and Analysis of Integrated Manufacturing System, National
Academy Press, Washington, DC, 1988.

[9] Jorgr Haddock, "An Expert System Framework based on a Simulation Genera­
tor," Simulation, Vol. 48, No. 2, 1987.

www.manaraa.com

114

10] James 0. Henriksen, "The Integrated Simulation Environment(Simulation Soft­
ware of 1990s)," O.R., Vol. 31, 1983.

11] Averill M. Law and W. David Kelton, Simulation Modeling and Analysis,
McGraw-Hill, New York, 1982.

12] Averill M. Law, "Simulation of Manufacturing System," froc, of the 1988 Winter
Simulation Conference, 1988.

13] J.E. Lenz, "MAST:A Simulation as Advanced as the FMS it Studies," 1st Pro­
ceedings of International Conference on Simulation in Manufacturing, IFS, Bed­
ford, England, 1985.

14] William R. Lilidgon and Jean J. O'Reilly, "SLAM-II for Microcomputer," Mod­
eling and Simulation on Microcomputer, 1985.

15] S. C. Mathewson, "The Application of Program Generator Software and Its
Extensions to Discrete Event Simulation Modeling," AIIE Transactions, Vol.
16, March, 1984.

16] S. C. Mathewson, "Simulation Program Generators: Code and Animation on a
P.C.," J. Dpi Res. Soc., Vol. 36, No. 7, 1985.

17] S.C. Mathewson, "Simulation Support Environments," in Computer Modeling
for Discrete Simulation (M. Pidd ed.), John Willey & Sons, New York, 1989.

18] Kevin D. Reilly, Warren T. Jones, and Pradip Dey, "The Simulation Environ­
ment Concept Artificial Intelligence Perspectives," AI and Simulation, 1985.

19] Robert G. Sargent, "A Tutorial on Validation and Verification of Simulation
Models," Proc. of the 1988 Winter Simulation Conference, 1988.

20] Lee Schruben, "Simulation Modeling with Event Graphs," Communications of
the ACM, Vol. 26, No. 11, 1983.

21] Robert E. Shannon, Richard Mayer, and Heimo H. Adelsberger, "Expert Sys­
tems and Simulation," Simulation, June, 1985.

22] Jonathan Billington, Geoferey R. Wheeler, and Michael C. Wilbur-Ham, "PRO­
TEAN: A High-level Petri Net Tool for the Specification and Verification of
Communication Protocols," IEEE Transactions on Software Engineering, Vol.
14, No. 3, 1988.

www.manaraa.com

115

[23] K. P. Brand and J. Kopainsky, "Principles and engineering of process control
with petri nets," IEEE Trans. Automatic Contr., Vol. 33, No. 2, 1988.

[24] Antonio Camurri and Paolo Franchi, "An Approach to the Design and Imple­
mentation of the Hierarchical Control system of FMS, Combining Structured
Knowledge Representation Formalisms and High-Level Petri nets," Proc. IEEE
Int. Conf. on Robotics and Automat., IEEE Computer Society Press, Washing­
ton, DC, 1990.

[25] D. Crockett, A. Desrochers, F. DiCesare, and T. Ward, "Implementation of a
Petri Net Controller for a Machining Workstation," Proc. IEEE Int. Conf. on
Robotics and Automat., IEEE Computer Society Press, Washington, DC, 1987.

[26] Frits Feldbrugge, "Petri net Tools," Lecture Notes on Computer Science, 222,
Springer-Verlag, Berlin; New York, 1985.

[27] Peter J. Haas and Gerald S. Shedler, "Stochastic Petri Net Representation of
Discrete Event Simulations," IEEE Transactions on Software Engineering, Vol
15, No. 4, 1989.

[28] Masaki Hasayuki takada, takashi Tommyo, and Hideo Matsuka, "Modeling of
Exception Handling in Manufacturing Cell Control and Its Application to PLC
Programming," Proc. IEEE Int. Conf. on Robotics and Automat., IEEE Com­
puter Society Press, Washington, DC, 1990.

[29] Mohsen A. Jafari, "Petri bet based Shop Floor Controller and Recovery Anal­
ysis," Proc. IEEE Int. Conf. Robotics and Automat., IEEE Computer Society
Press, Washington, DC, 1990.

[30] Kurt Jensen, "Coloured Petri Nets," Lecture Notes on Computer Science, 255,
Springer-Verlag, Berlin; New York, 1986.

[31] K. Jensen, "How to find the Invariants of Colored Petri Nets," in Mathematical
Foundations of Computer Science, Lecture Notes on Computer Science, 118,
Springer-Verlag, Berlin; New York, 1981.

[32] Kurt Jensen, "Computer Tools for Construction, Modification and Analysis of
Petri Nets," Lecture Notes on Computer Science, 255. Springer-Verlag, Berlin;
New York, 1986.

[33] M. Kamath and N. Viswanadham, "Applications of Petri Net-Based Models in
the Modeling and Analysis of FMSs," Proc. IEEE Int. Conf. on Robotics and
Automat., lEE Computer Society Press, Washington, DC, 1987.

www.manaraa.com

116

[34] Y. Edmund Lien, "Termination Properties of Generalized Petri Nets," SIAM J.
Computing, Vol. 5, No. 2, 1976.

[35] A Aziz Merabet, "Synchronization of Operations in a Flexible Manufacturing
Cell: The Petri Net Approach," Journal of Manufacturing Systems, Vol. 5, No.
3, 1986.

[36] Jerre D. Noe, "Hierarchical Modeling with PRO-NETS," Proc. 14th Design Au­
tomation Conference, 1977.

[37] C. V. Ramamoorthy and Gary S. Ho, "Performance Evaluation of Asynchronous
Concurrent Systems Using Petri Nets," IEEE Transactions on Software Engi­
neering, Vol. SE-6, No. 5, 1980.

[38] Ramarathnam Ravichandran and Amiya K. Chakravarty, "Decision Support in
Flexible Manufacturing Systems Using Timed Petri Nets," Journal of Manufac­
turing Systems, Vol. .5, No. 2, 1986.

[39] A Saharoui, H. Atabakhche, M. Courvoisier, and R. Valette, "Joining Petri
Nets and Knowledge-Based Systems for Monitoring Purposes," Proc. IEEE Int.
Conf. on Robotics and Automat., IEEE Computer Society Press, Washington,
DC, 1987.

[40] Josepth Sifakis, "Structural Properties of Petri Nets," Lecture Notes on Com­
puter Science, 64, Springer-Verlag, Berlin; New York, 1978.

[41] Kimon P. Valavanis, "On the Hierarchical Modeling Analysis and Simulation of
Flexible Manufacturing Systems with Extended Petri Nets," IEEE Transactions
on Systems, Man, and Cybernetics, Vol. 20, No. 1, 1990.

[42] R. Valette and H. Atabakhche, "Petri Nets for Sequence Constraint Propagation
in Knowledge Based Approaches," in Concurrency and Nets, Springer-Verlag,
Berlin; New York, 1987.

[43] Rudiger Valk, "On the Computational Power of Extended Petri Nets," Lecture
Notes on Computer Science, 64, Springer-Verlag, Berlin; New York, 1978.

[44] Meng Chu Zhou and Frank Dicesare, "Adaptive Design of Petri Net Controller
for Error Recovery in Automated Manufacturing Systems," IEEE Transactions
on Systems, Man, and Cybernetics, Vol. 19, No. 5, 1989.

[45] Christopher V. Jones, "An Introduction to Graph-based Modeling Systems, Part
I: Overview," ORSA Journal on Computing, Vol.2, No. 2, Spring, 1990.

www.manaraa.com

117

F. Azadivar and J. Talavage, "Optimization of Stochastic Simulation Models,"
Mathematics and Computers in Simulation, Vol. 22, 1980.

Stephen S. Lavenberg (Chairperson), "The Initial Transient in Steady State Sim­
ulation (Panel Discussion)," 1981 Winter Simulation Conference Proceedings,
1981.

Averill M. Law, "Statistical Analysis of Simulation Output," 0. R., Vol. 31, No.
6, 1983.

Udayan Nandkeolyar and David P. Christy, "Using Computer Simulation to Op­
timize Flexible Manufacturing System Design," 1989 Winter Simulation Con­
ference proceedings, 1989.

Dennis E. Smith, "Automatic Optimum-seeking Program for Digital Simula­
tion," Simulation, 1976.

T. S. Chan and H. A. Pak, "Modeling of a Controller for a Flexible Manufactur­
ing Cell," in Simulation Applications in Manufacturing, IFS, Bedford, England,
1986.

G. Chryssolouris, K. Wright, J. Pierce, and W. Cobb, "Manufacturing Systems
Operation: Dispatch Rules Versus Intelligent Control," Robotics and Computer
Integrated Manufacturing, Vol. 4, No. 3/4, 1988.

Peter Floss and Joseph J. Talavage, "A Knowledge-based Design Procedure for
Flexible Manufacturing Systems," AI and Simulation, 1988.

Donnie R. Ford and Bernard J. Schroer, "An Expert Manufacturing Simulation
System," Simulation, May, 1987.

Joseph M. Mellichamp and Ahmed F.A. Wahab, "An Expert System for FMS
Design," Simulation, May, 1987.

Paul Rogers and David J. Williams, "A Knowledge-based System Linking Simu­
lation to Real-time Control for Manufacturing Cells," Proa. IEEE Int. Conf. on
Robotics and Automat., IEEE Computer Society Press, Washington, DC, 1988.

Josepth Talavage and Roger G. Hannam, Flexible Manufacturing Systems in
Practice, Marcel Dekker, New York, 1988.

www.manaraa.com

118

ACKNOWLEDGEMENTS

I wish to thank professor Thomas Bart a for his encouragement and understand­

ing throughout preparing this dissertation. Despite of my weak communication, he

patiently listened to me and reviewed my dissertation. I am very much indebted to

my committee members-Dr. H. T. David, Dr. John Jackman, Dr. George Strawn,

and Dr. John Wacker. Their stimulating guidance, suggestion, and critics encour­

aged me in carrying out this research. I also thank Dr. Linn who gave much advise

in preparing Part III of this dissertation. I could not forget Dr. Kwak; he introduced

me to the exciting fields of Petri nets, and gave valuable comments regarding study

at ISU.

Finally, I appreciate my family for their love, trust, and support. This disser­

tation would not have been completed without the trust and understanding of my

wife.

www.manaraa.com

119

APPENDIX: TOKEN PLAYERS

Generally, discrete-event simulation systems are classified into three main fam­

ilies according to the strategy of modeling and simulation execution: event-based,

activity-based, and process-interaction. For the simulation executive (token player)

of Petri nets, these approaches can be implemented. Simply, a Petri net model can

be considered to consist of sets of events, activities, and relationships between events

and activities. The event (transition) can be executed (fired) only when it meets the

transition enabling conditions. Therefore, a Petri net is executed simply by scanning

all transitions at each cycle until no more transitions can be fired. This approach

is actually based on the activity-scanning strategy. It is not surprising that some

Petri net simulation software adopted the activity-based approach. To implement

this approach, some considerations are necessary to reduce the computation time in

scanning all of the transitions at a time beat. This was done by scanning the tran­

sitions that have at least one input place marked with tokens (Alanche, et al., 1984;

refer to Part II), or by extending three-phased approach (Evans, 1981).

Event-based approach can also be implemented. Only the transitions which

satisfy the enabling conditions are stored in a current event list. When a transition

in the current event list is fired, the current event and future event lists are updated

by checking the neighborhood transitions connected by the places involved in the

www.manaraa.com

120

transition firing. The time scan is carried by fetching a record in the future event

list.

The process-interaction approach views the process as the temporary entity flow

(e.g., parts in FMSs). In the application of token player of our Petri net exploited in

this thesis, the process is viewed for the active tokens. Therefore, another approach is

possible by manipulating future event list which stores places containing active tokens

in processing state, and current event list containing places which have active tokens

in waiting state. But, like activity-scanning approach, the transitions connected with

places in the current event list should be scanned at a time beat.

The developed simulation tool provides two token players: Transition-based

token player and Place-scanning token player. The Transition-based token player

is based on the event-based approach, and Place-scanning approach combines the

activity-scanning and process-interaction approaches.

Transition-based token player

For this token player, two-doubly linked lists are constructed: Firing Transition

List (FTL) and Processing Place List (PPL). FTL contains the records for those

transitions which meet the transition enabling conditions. The transition records

are linked in the decreasing order of waiting time of tokens in the input places of

that transition. PPL contains the records for those places in which active tokens in

processing state are marked. The place record includes two attributes; place number

and scheduled finishing time of process imposed to an active token in that place. The

records are linked in the order of these times. The token player is executed with the

following procedures.

www.manaraa.com

121

Phase 1: Transition firing

1.1 Fetch and remove the transition at the head of FTL.

1.2 Perform arrival and departure processes for the tokens involved in the firing of

the fetched transition. Update FTL and PPL.

1.3 Repeat 1.1 and 1.2 until there is no record in FTL.

Phase 2: Time advance

2.1 Fetch and remove the record at the head of PPL. Advance simulation clock to

the scheduled finishing time of the record. Update FTL.

2.2 Repeat 2.1 while simulation clock equals the scheduled finishing tome of the

fetched record.

2.3 Check the termination of simulation. If the current status meets the termination

condition, then stop. Otherwise, go to Phase 1.

Place-scanning token player

For the place-scanning token player, two doubly-linked lists are constructed:

Waiting Place List (WPL) and Processing Place List (PPL). WPL contains the

records for those places in which active tokens in waiting state are marked. It has

two main attributes: place number and the time switched to a waiting state in the

place. The records in WPL are linked in decreasing order of this time.

www.manaraa.com

122

Phase 1; Place scanning

1.1 Fetch and remove one by one from the head of WPL, and check if any output

transition of the fetched place can be enabled. If the transition meets the

enabling conditions, perform departure and arrival procedures according to the

transition firing rules.

1.2 Repeat 1.1 until there is no place in WPL whose output transitions can be

enabled.

Phase 2: Time advance

2.1 Fetch and remove the record at the head of PPL. Advance simulation clock to

the scheduled finishing time of the record. Update FTL.

2.2 Repeat 2.1 while simulation clock equals the scheduled finishing tome of the

fetched record.

2.3 Check the termination of simulation. If the current status meets the termination

condition, then stop. Otherwise, go to Phase 1.

Comparison of complexity

Two token players presented are different each other. To compare the complexity,

the following notations are used.

k: the number of tokens in a net

the average number of output arcs of a place

n2' the average number of input arcs of a place

713: the average number of output arcs of a transition.

www.manaraa.com

123

n^\ the average number of input arcs of a transition

m: the average number of transitions to fire at a time beat

For a performance measure, the maximum number of places to be checked in

order to fire m transitions in a time beat is considered.

1. Place-scanning token player

Complexity = kni{n^ + n^)[m + 1)

= 2kn^[m + 1), if = «2,03 = «4.

2. Transition-based token player

Complexity = (n^ + n^) {ni + n2)m

2 — Sn^Wgm, if nj = n2,n^ = n^.

Usually, a Petri net model has same number of input arcs and output arcs at

each node (i.e., n-^ = and «3 = 724). In this case, the transition-based token

player is better when k{m + 1) > ^nyn.

Under the place-scanning token player, all marked active tokens in waiting state

have to be evaluated at each cycle. This gives in efficiency in computation time as

in the case of activity-scanning approach. It may scan unnecessary places. Rather

than scanning all places or marked places, only the active tokens in waiting state are

evaluated at each cycle (note that passive tokens cannot move voluntarily without

combination with active tokens). This reduction in evaluation provides efficient exe­

cution in case of a busy shop in FMS because very few active tokens are in waiting

state at a time.

www.manaraa.com

124

The transition-based token player can provide efficient computation time when

small number of arcs is connected with transitions. To update the FTL at each

transition firing, however, it is necessary to check the transition enabling conditions

for the neighborhood transitions.

	1991
	A computer-aided simulation tool based on Petri nets for the design and analysis of FMSs
	Dong-Soon Yim
	Recommended Citation

	tmp.1416278105.pdf.z3xK9

